SSL-ProtoNet: Self-supervised Learning Prototypical Networks for few-shot learning

过度拟合 计算机科学 人工智能 机器学习 水准点(测量) 蒸馏 任务(项目管理) 模式识别(心理学) 公制(单位) 样品(材料) 班级(哲学) 一般化 人工神经网络 数学 地理 管理 经济 化学 有机化学 大地测量学 数学分析 色谱法 运营管理
作者
Jit Yan Lim,Kian Ming Lim,Chin Poo Lee,Yong Xuan Tan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122173-122173 被引量:41
标识
DOI:10.1016/j.eswa.2023.122173
摘要

Few-shot learning is seeking to generalize well to unseen tasks with insufficient labeled samples. Existing works have achieved generalization by exploring inter-class discrimination. However, their performance is limited because sample discrimination is neglected. In this work, we propose a metric-based few-shot approach that leverages self-supervised learning, Prototypical networks, and knowledge distillation, referred to as SSL-ProtoNet, to utilize sample discrimination. The proposed SSL-ProtoNet consists of three stages: pre-training stage, fine-tuning stage, and self-distillation stage. In the pre-training stage, self-supervised learning is leveraged to cluster the samples with their augmented variants to enhance the sample discrimination. The learned representation is then served as an initial point for the next stage. In the fine-tuning stage, the model weights transferred from the pre-training stage are fine-tuned to the target few-shot tasks. A self-supervised loss and a few-shot loss are integrated to prevent overfitting during few-shot task adaptation and to maintain the embedding diversity. In the self-distillation stage, the model is arranged in a teacher–student architecture. The teacher model will serve as a guidance in student model training to reduce overfitting and further improve the performance. The experimental results show that the proposed SSL-ProtoNet outshines the state-of-the-art few-shot image classification methods on three benchmark few-shot datasets, namely, miniImageNet, tieredImageNet, and CIFAR-FS. The source code for the proposed method is available at https://github.com/Jityan/sslprotonet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助卷卷采纳,获得10
1秒前
凶狠的食铁兽完成签到,获得积分10
1秒前
5秒前
6秒前
6秒前
liangyong完成签到,获得积分10
7秒前
7秒前
Atopos文完成签到,获得积分10
8秒前
香精完成签到,获得积分10
9秒前
wql完成签到,获得积分10
9秒前
简单发布了新的文献求助10
10秒前
11秒前
12秒前
烟花应助xiechenxi采纳,获得10
15秒前
毛康完成签到 ,获得积分10
16秒前
隐形曼青应助锦鲤采纳,获得10
16秒前
从容芮应助天真以莲采纳,获得50
17秒前
18秒前
赵程程完成签到 ,获得积分10
18秒前
nnn完成签到,获得积分10
19秒前
美少叔叔完成签到 ,获得积分10
20秒前
小二郎应助星野采纳,获得10
20秒前
科学家发布了新的文献求助10
22秒前
jjffyy完成签到 ,获得积分10
22秒前
怪怪发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
28秒前
爱偷懒的猪完成签到,获得积分10
30秒前
Ivy发布了新的文献求助10
30秒前
32秒前
33秒前
jojo发布了新的文献求助10
34秒前
凌发发布了新的文献求助30
37秒前
大个应助Yoko采纳,获得10
38秒前
光明发布了新的文献求助10
38秒前
天真以莲完成签到,获得积分10
39秒前
39秒前
big ben完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4439186
求助须知:如何正确求助?哪些是违规求助? 3911985
关于积分的说明 12149488
捐赠科研通 3558857
什么是DOI,文献DOI怎么找? 1953520
邀请新用户注册赠送积分活动 993352
科研通“疑难数据库(出版商)”最低求助积分说明 888847