Transferability evaluation of the deep potential model for simulating water-graphene confined system

可转让性 计算机科学 从头算 理论(学习稳定性) 分子动力学 范围(计算机科学) 人工智能 算法 机器学习 计算化学 化学 物理 量子力学 程序设计语言 罗伊特
作者
D. Liu,Jianzhong Wu,Diannan Lu
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (4) 被引量:9
标识
DOI:10.1063/5.0153196
摘要

Machine learning potentials (MLPs) are poised to combine the accuracy of ab initio predictions with the computational efficiency of classical molecular dynamics (MD) simulation. While great progress has been made over the last two decades in developing MLPs, there is still much to be done to evaluate their model transferability and facilitate their development. In this work, we construct two deep potential (DP) models for liquid water near graphene surfaces, Model S and Model F, with the latter having more training data. A concurrent learning algorithm (DP-GEN) is adopted to explore the configurational space beyond the scope of conventional ab initio MD simulation. By examining the performance of Model S, we find that an accurate prediction of atomic force does not imply an accurate prediction of system energy. The deviation from the relative atomic force alone is insufficient to assess the accuracy of the DP models. Based on the performance of Model F, we propose that the relative magnitude of the model deviation and the corresponding root-mean-square error of the original test dataset, including energy and atomic force, can serve as an indicator for evaluating the accuracy of the model prediction for a given structure, which is particularly applicable for large systems where density functional theory calculations are infeasible. In addition to the prediction accuracy of the model described above, we also briefly discuss simulation stability and its relationship to the former. Both are important aspects in assessing the transferability of the MLP model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的问枫完成签到 ,获得积分10
刚刚
刚刚
无花果应助冷艳的鸣凤采纳,获得10
1秒前
上邪完成签到,获得积分10
2秒前
ZHAN发布了新的文献求助10
3秒前
J_C_Van完成签到,获得积分10
3秒前
4秒前
科研通AI6应助xuwen采纳,获得10
4秒前
ossinu完成签到,获得积分10
4秒前
科研通AI6应助寻悦采纳,获得10
5秒前
6秒前
张启凤完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
抹茶芝士酸奶完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
xiaomeng发布了新的文献求助10
10秒前
英俊的铭应助szf采纳,获得10
11秒前
11秒前
11秒前
星辰大海应助陈陈采纳,获得10
11秒前
初初发布了新的文献求助10
12秒前
Queen完成签到,获得积分10
12秒前
酷波er应助snail01采纳,获得10
12秒前
ste完成签到,获得积分10
13秒前
yuhuzhouye发布了新的文献求助10
13秒前
路宁完成签到,获得积分10
13秒前
13秒前
Zeee应助单纯的思松采纳,获得10
14秒前
yang发布了新的文献求助10
15秒前
16秒前
彭a发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
斯文败类应助whl采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643294
求助须知:如何正确求助?哪些是违规求助? 4760914
关于积分的说明 15020418
捐赠科研通 4801640
什么是DOI,文献DOI怎么找? 2566917
邀请新用户注册赠送积分活动 1524783
关于科研通互助平台的介绍 1484355