How to promote the participation of enterprises using open government data? Evolutionary game analysis by applying dynamic measures

补贴 激励 晋升(国际象棋) 业务 政府(语言学) 背景(考古学) 利益相关者 持续性 产业组织 地方政府 大数据 知识管理 公共经济学 经济 公共关系 计算机科学 微观经济学 政治学 公共行政 政治 哲学 古生物学 操作系统 法学 生物 语言学 市场经济 生态学
作者
Lijie Feng,Lehu Zhang,Jinfeng Wang,Feng Jian
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122348-122348 被引量:12
标识
DOI:10.1016/j.eswa.2023.122348
摘要

As the development of smart cities, driven by emerging technologies, enters a new phase, the focus shifts towards sustaining operations rather than building new infrastructures. In the era of big data, one crucial factor for the sustainability of smart cities is the innovation and economic value generated through open government data (OGD). Local governments often adopt incentive policies to encourage participation, recognizing that most emerging technologies are driven by innovation and promotion from enterprises. This raises a fundamental question: how do the strategies of local governments and enterprises interact in the context of open government data development? In this study, we have developed an approach based on evolutionary game theory to examine the interactions of OGD participants, such as local governments and enterprises, in shaping their long-term decisions. Specifically, we have explored the effectiveness and efficiency of combinations involving hybrid subsidies and data access fees by simulating Evolutionarily Stable Strategies (ESS) based on empirical cases from enterprises. Our findings indicate that dual dynamic measures are more effective and efficient in encouraging stakeholder participation in open government data initiatives over the long term. The results underscore the preference for flexible policies over rigid ones and highlight the critical role of positive interactions between enterprises and local governments in fostering the sustainable operation of OGD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumu发布了新的文献求助10
刚刚
刚刚
顾矜应助11采纳,获得10
刚刚
刚刚
1秒前
lucifer123发布了新的文献求助10
1秒前
叶子完成签到,获得积分10
2秒前
Xwx61010发布了新的文献求助10
2秒前
啧啧啧发布了新的文献求助10
2秒前
kl发布了新的文献求助10
3秒前
Hhhhhhhh发布了新的文献求助100
3秒前
3秒前
贝博发布了新的文献求助10
4秒前
爰采唐矣完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
7秒前
8秒前
8秒前
冷酷芫完成签到,获得积分10
9秒前
Akim应助允胖胖采纳,获得10
9秒前
9秒前
10秒前
科目三应助眼睛大丹蝶采纳,获得10
10秒前
JamesPei应助mumu采纳,获得10
10秒前
森ok发布了新的文献求助10
10秒前
10秒前
Xwx61010完成签到,获得积分10
11秒前
11秒前
stargazor发布了新的文献求助10
12秒前
Liuping发布了新的文献求助10
12秒前
lcs完成签到,获得积分10
13秒前
心肌细胞发布了新的文献求助10
13秒前
13秒前
Yihong发布了新的文献求助10
13秒前
14秒前
Hello应助slowride采纳,获得10
14秒前
15秒前
15秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831948
求助须知:如何正确求助?哪些是违规求助? 3374282
关于积分的说明 10484141
捐赠科研通 3094156
什么是DOI,文献DOI怎么找? 1703342
邀请新用户注册赠送积分活动 819390
科研通“疑难数据库(出版商)”最低求助积分说明 771472