A novel regression method: Partial least distance square regression methodology

偏最小二乘回归 数学 统计 回归分析 典型相关 皮尔逊积矩相关系数 潜变量 线性回归 主成分回归 偏相关 分段回归 相关系数 主成分分析 多元统计 非线性回归 回归 贝叶斯多元线性回归 回归诊断 相关性 几何学
作者
Bin Nie,Yuwen Du,Jianqiang Du,Yi Rao,Yuchao Zhang,Xuepeng Zheng,Nianhua Ye,Haike Jin
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:237: 104827-104827 被引量:17
标识
DOI:10.1016/j.chemolab.2023.104827
摘要

Partial Least Squares (PLS) is a multivariate linear statistical analysis method integrating principal component analysis (PCA), canonical correlation analysis (CCA), and multiple linear regression (MLR) analysis. It can effectively solve the problems of multiple correlation between variables and small sample size. However, PLS also has some imperfections, on the one hand, PLS extracts the latent variables based on the maximization of Pearson correlation coefficient of independent and dependent variables. Here, Pearson correlation coefficient usually cannot measure the nonlinear relationship between variables, so the latent variables cannot ensure the strongest interpretation. On the other hand, PLS applies MLR to the extracted latent variables, which cannot truly reflect the nonlinear relationship of data, so the regression function is usually under-fitting. The above two imperfect designs are the main reasons for the low regression accuracy and prediction performance of PLS for nonlinear data. According to the above problems, this paper proposes a Partial Least Distance Square (PLDS) regression method. PLDS reflects the original data information through distance variance in PCA, employs distance correlation coefficient to measure the correlation between independent and dependent variables in CCA, and performs quasilinear regression and model solution method to obtain the final regression equation in MLR. In order to verify the effectiveness of the proposed method, the UCI datasets and Chinese medicine datasets with dose-effect relationship was used to compare the new method with other classical regression methods. Finally, the experimental results show that PLSD has better prediction performance regardless of whether there is significant nonlinear relationship between variables. In addition, PLDS has high regression accuracy and low computation complexity for high-dimensional and small-sample data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tramp应助娜娜采纳,获得10
1秒前
小贾发布了新的文献求助10
1秒前
1秒前
科研通AI5应助cy采纳,获得10
1秒前
水濑心源完成签到,获得积分10
2秒前
2秒前
杨小羊发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
亲爱的融发布了新的文献求助20
4秒前
4秒前
鳗鱼依波发布了新的文献求助200
4秒前
Yolenders完成签到 ,获得积分10
5秒前
LLL完成签到,获得积分10
5秒前
芝士发布了新的文献求助10
6秒前
6秒前
思源应助典雅的俊驰采纳,获得10
6秒前
Hello应助星星采纳,获得10
7秒前
明亮无颜发布了新的文献求助20
7秒前
7秒前
modesty发布了新的文献求助10
7秒前
8秒前
夕荀发布了新的文献求助10
9秒前
糖淘淘发布了新的文献求助30
9秒前
我是站长才怪应助hhh采纳,获得10
10秒前
10秒前
不懈奋进应助Kyrie采纳,获得30
10秒前
田様应助正好采纳,获得10
11秒前
LIU完成签到,获得积分10
12秒前
hann发布了新的文献求助10
12秒前
cy完成签到,获得积分10
13秒前
13秒前
左秋白发布了新的文献求助10
13秒前
小洪俊熙完成签到,获得积分10
13秒前
zho应助心是明镜采纳,获得10
13秒前
开心衬衫完成签到,获得积分20
14秒前
14秒前
YOUZI发布了新的文献求助10
14秒前
14秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861338
求助须知:如何正确求助?哪些是违规求助? 3403761
关于积分的说明 10636537
捐赠科研通 3126807
什么是DOI,文献DOI怎么找? 1724438
邀请新用户注册赠送积分活动 830471
科研通“疑难数据库(出版商)”最低求助积分说明 779173