Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data

计算机科学 阻力 流体力学 杠杆(统计) 流体力学 可视化 矢量场 Lift(数据挖掘) 人工智能 数据同化 机械 物理 机器学习 气象学
作者
Maziar Raissi,Alireza Yazdani,George Em Karniadakis
出处
期刊:Cornell University - arXiv 被引量:69
标识
DOI:10.48550/arxiv.1808.04327
摘要

We present hidden fluid mechanics (HFM), a physics informed deep learning framework capable of encoding an important class of physical laws governing fluid motions, namely the Navier-Stokes equations. In particular, we seek to leverage the underlying conservation laws (i.e., for mass, momentum, and energy) to infer hidden quantities of interest such as velocity and pressure fields merely from spatio-temporal visualizations of a passive scaler (e.g., dye or smoke), transported in arbitrarily complex domains (e.g., in human arteries or brain aneurysms). Our approach towards solving the aforementioned data assimilation problem is unique as we design an algorithm that is agnostic to the geometry or the initial and boundary conditions. This makes HFM highly flexible in choosing the spatio-temporal domain of interest for data acquisition as well as subsequent training and predictions. Consequently, the predictions made by HFM are among those cases where a pure machine learning strategy or a mere scientific computing approach simply cannot reproduce. The proposed algorithm achieves accurate predictions of the pressure and velocity fields in both two and three dimensional flows for several benchmark problems motivated by real-world applications. Our results demonstrate that this relatively simple methodology can be used in physical and biomedical problems to extract valuable quantitative information (e.g., lift and drag forces or wall shear stresses in arteries) for which direct measurements may not be possible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
假装学霸完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
陈东东完成签到,获得积分10
3秒前
xl²-B完成签到,获得积分10
3秒前
祭礼之龙完成签到,获得积分10
4秒前
4秒前
5秒前
poohpooh发布了新的文献求助10
5秒前
哦哦哦完成签到,获得积分10
5秒前
小茵茵完成签到,获得积分10
5秒前
FIONA发布了新的文献求助10
5秒前
ChenZw1368完成签到 ,获得积分10
6秒前
义气易巧发布了新的文献求助10
6秒前
6秒前
赘婿应助瞿采枫采纳,获得10
7秒前
汉堡包应助曲幻梅采纳,获得10
7秒前
Bohne发布了新的文献求助10
7秒前
7秒前
8秒前
欣慰水蓝发布了新的文献求助10
8秒前
cruise完成签到,获得积分20
8秒前
Dan发布了新的文献求助10
9秒前
科研助手6应助crazy采纳,获得10
9秒前
柔弱紊发布了新的文献求助10
9秒前
10秒前
Joey完成签到,获得积分20
12秒前
科研通AI5应助某某采纳,获得10
12秒前
shabbow完成签到,获得积分10
12秒前
超级白昼发布了新的文献求助10
13秒前
13秒前
Hello应助义气易巧采纳,获得10
13秒前
调皮书本发布了新的文献求助20
14秒前
可爱的函函应助iu采纳,获得10
14秒前
14秒前
离线发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789164
求助须知:如何正确求助?哪些是违规求助? 3334289
关于积分的说明 10268778
捐赠科研通 3050705
什么是DOI,文献DOI怎么找? 1674102
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760657