Abstract 12117: Machine Learning to Probe Variability in Patient Outcomes After Atrial Fibrillation Ablation - The Stanford AF Registry (start)

医学 心房颤动 内科学 烧蚀 心脏病学 导管消融 房性心动过速 前瞻性队列研究 置信区间
作者
Brototo Deb,Neal K. Bhatia,Albert J. Rogers,Tina Baykaner,Hui-Wen Chang,Paul Clopton,Prasanth Ganesan,Feng Ran,Samuel Ruipérez-Campillo,Mintu P. Turakhia,Alexander C Perino,Marco Pérez,Paul C. Zei,Nitish Badhwar,Nitish Badhwar,Chad Brodt,Sanjiv M. Narayan,Paul J. Wang,Mohan Viswanathan
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:146 (Suppl_1)
标识
DOI:10.1161/circ.146.suppl_1.12117
摘要

Introduction: A major challenge in improving atrial fibrillation (AF) ablation is the variability in outcome between patients, which is not captured by traditional biostatistics. Hypothesis: We hypothesized that machine learning (ML) can be used to probe phenotypes of variable response to AF ablation. Methods: We studied 632 patients with drug-refractory AF, enrolled prospectively for a uniform strategy of PVI plus map-guided AF ablation at Stanford Health. We applied unsupervised ML to 64 variables to identify features associated with freedom from AF or atrial tachycardia (AT) at 3 years. Results: Patients (N=632) were 65±10 years, 28.2% female, BMI 30.2±6 kg/m2, 59.7% with non-paroxysmal AF, and 70.0% at de novo ablation. At 1-year, freedom from AF and AF/AT were 77.5% (95% CI interval: 74.2%, 80.9%) and 70.1% at 1 year (66.5%, 73.8%). At 3 years, they were 55.5% (51.2%, 60.1%) and 48.6% (44.3%-53.3%) respectively, regardless of antiarrhythmic drugs (P=0.23). Unsupervised ML revealed 3 phenotypic clusters that crossed conventional AF labels (Fig1). An Early AF cluster had best outcomes (1Y/3Y: 79.6 /53.5%); a Non-remodeled AF cluster (69.8/52.0%) had most comorbidities, a substantial number of non-paroxysmal AF patients, yet better outcomes than a cluster characterized by atrial or ventricular Remodeling (66.4/42.3%) (p=0.028) (Table 1). Conclusions: In a large prospective AF registry, ML revealed clusters for outcomes, spanning conventional clinical labels and highlighting that patients with comorbidities may have good outcomes if they lack structural remodeling, and that electrical and structural remodeling may follow independent courses between patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助李广辉采纳,获得10
2秒前
kxy发布了新的文献求助10
5秒前
天真的不评完成签到,获得积分10
7秒前
7秒前
脑洞疼应助张立人采纳,获得10
10秒前
小赵发布了新的文献求助20
11秒前
在水一方应助负责的妙松采纳,获得10
12秒前
张立人完成签到,获得积分10
13秒前
科研通AI5应助森气采纳,获得30
15秒前
16秒前
TRY完成签到,获得积分10
17秒前
17秒前
huahua完成签到 ,获得积分10
19秒前
yliaoyou完成签到,获得积分10
19秒前
张立人发布了新的文献求助10
20秒前
温柔的白秋完成签到,获得积分20
20秒前
21秒前
22秒前
22秒前
山城小丸发布了新的文献求助10
22秒前
传奇3应助103921wjk采纳,获得10
23秒前
李剑鸿发布了新的文献求助30
23秒前
星辰大海应助小赵采纳,获得10
23秒前
24秒前
森气发布了新的文献求助30
26秒前
莎莎士比亚完成签到,获得积分10
27秒前
27秒前
31秒前
ronnie发布了新的文献求助10
31秒前
无花果应助Krapanda采纳,获得10
36秒前
38秒前
103921wjk发布了新的文献求助10
38秒前
39秒前
卡卡完成签到,获得积分10
42秒前
44秒前
ronnie完成签到,获得积分10
46秒前
ai发布了新的文献求助10
47秒前
49秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778882
求助须知:如何正确求助?哪些是违规求助? 3324413
关于积分的说明 10218351
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798570
科研通“疑难数据库(出版商)”最低求助积分说明 758440