锆
材料科学
流变学
化学工程
粘度
乳酸
微观结构
高分子化学
复合材料
冶金
地质学
工程类
古生物学
细菌
作者
Shenglong Shi,Jinsheng Sun,Shanbo Mu,Kaihe Lv,Jinping Liu,Yingrui Bai,Jin‐Tang Wang,Xianbin Huang,Jiafeng Jin,Jian Li
出处
期刊:Molecules
[Multidisciplinary Digital Publishing Institute]
日期:2024-06-12
卷期号:29 (12): 2798-2798
被引量:3
标识
DOI:10.3390/molecules29122798
摘要
To investigate the effect of the chemical composition of a metal–organic crosslinker on the performances of fracturing fluid in high-temperature conditions, four zirconium (Zr) crosslinkers and one aluminum–zirconium (Al-Zr) crosslinker with a polyacrylamide were used. The crosslinkers possessed the same Zr concentration, but they differed in component amounts and the order of the addition of the crosslinker components, leading to different chemical compositions in the crosslinkers. The fracturing fluids prepared by different tested crosslinkers were compared in terms of properties of rheological behavior, sand-carrying ability, microstructure, and gel breaking characteristics. The results showed that the fracturing fluids prepared by zirconium lactic acid, ethanediamine, and sorbitol crosslinkers offered the slowest viscosity development and highest final viscosity compared to the zirconium lactic acid crosslinker and the zirconium lactic acid and ethanediamine crosslinker. The zirconium sorbitol, lactic acid, and ethanediamine crosslinker exhibited a faster crosslinking rate and a higher final viscosity than the zirconium lactic acid, ethanediamine, and sorbitol crosslinker; the crosslinker showed crosslinking density and crosslinking reactivity, resulting in more crosslinking sites and a higher strength in the fracturing fluid. The Al-Zr-based crosslinker possessed better properties in temperature and shear resistance, viscoelasticity, shear recovery, and sand-carrying ability than the Zr-based crosslinker due to the synergistic crosslinking effect of aluminum and zirconium ions. The tertiary release gelation mechanism of the Al-Zr-based fracturing fluid achieved a temperature resistance performance in the form of continuous crosslinking, avoiding the excessive crosslinking dehydration and reducing viscosity loss caused by early shear damage. These results indicated that the chemical compositions of metal–organic crosslinkers were important factors in determining the properties of fracturing fluids. Therefore, the appropriate type of crosslinker could save costs without adding the additional components required for high-temperature reservoirs.
科研通智能强力驱动
Strongly Powered by AbleSci AI