A deep learning based multi-model approach for predicting drug-like chemical compound’s toxicity

赫尔格 心脏毒性 毒性 药品 深度学习 药物开发 药理学 急性毒性 计算机科学 机器学习 人工智能 医学 内科学 钾通道
作者
Konda Mani Saravanan,Jiang-Fan Wan,Liujiang Dai,Jiajun Zhang,John Z. H. Zhang,Haiping Zhang
出处
期刊:Methods [Elsevier BV]
卷期号:226: 164-175 被引量:5
标识
DOI:10.1016/j.ymeth.2024.04.020
摘要

Ensuring the safety and efficacy of chemical compounds is crucial in small-molecule drug development. In the later stages of drug development, toxic compounds pose a significant challenge, losing valuable resources and time. Early and accurate prediction of compound toxicity using deep learning models offers a promising solution to mitigate these risks during drug discovery. In this study, we present the development of several deep-learning models aimed at evaluating different types of compound toxicity, including acute toxicity, carcinogenicity, hERG_cardiotoxicity (the human ether-a-go-go related gene caused cardiotoxicity), hepatotoxicity, and mutagenicity. To address the inherent variations in data size, label type, and distribution across different types of toxicity, we employed diverse training strategies. Our first approach involved utilizing a graph convolutional network (GCN) regression model to predict acute toxicity, which achieved notable performance with Pearson R 0.76, 0.74, and 0.65 for intraperitoneal, intravenous, and oral administration routes, respectively. Furthermore, we trained multiple GCN binary classification models, each tailored to a specific type of toxicity. These models exhibited high area under the curve (AUC) scores, with an impressive AUC of 0.69, 0.77, 0.88, and 0.79 for predicting carcinogenicity, hERG_cardiotoxicity, mutagenicity, and hepatotoxicity, respectively. Additionally, we have used the approved drug dataset to determine the appropriate threshold value for the prediction score in model usage. We integrated these models into a virtual screening pipeline to assess their effectiveness in identifying potential low-toxicity drug candidates. Our findings indicate that this deep learning approach has the potential to significantly reduce the cost and risk associated with drug development by expediting the selection of compounds with low toxicity profiles. Therefore, the models developed in this study hold promise as critical tools for early drug candidate screening and selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助肥仔小白采纳,获得10
刚刚
wwww完成签到,获得积分10
刚刚
谢涛发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
赵保钢完成签到,获得积分10
2秒前
高高的无敌完成签到,获得积分10
2秒前
2秒前
Li完成签到,获得积分10
2秒前
wei完成签到,获得积分10
2秒前
3秒前
凸迩丝儿发布了新的文献求助10
3秒前
3秒前
1433223完成签到,获得积分10
3秒前
avc完成签到,获得积分10
3秒前
wwww发布了新的文献求助10
3秒前
科研通AI5应助狂野傲珊采纳,获得10
3秒前
刘迎发布了新的文献求助10
3秒前
tiko发布了新的文献求助10
5秒前
ssssss发布了新的文献求助10
5秒前
止语完成签到 ,获得积分20
6秒前
量子星尘发布了新的文献求助10
7秒前
GRG完成签到 ,获得积分0
7秒前
ouyangying发布了新的文献求助10
7秒前
8秒前
12234hao发布了新的文献求助10
8秒前
袁袁完成签到,获得积分10
8秒前
9秒前
10秒前
晴天完成签到,获得积分10
10秒前
SciGPT应助Li采纳,获得10
10秒前
tizzy完成签到,获得积分10
10秒前
10秒前
QM完成签到,获得积分10
10秒前
何处1惹尘埃完成签到,获得积分10
11秒前
11秒前
充电宝应助凸迩丝儿采纳,获得10
11秒前
研友_8DWkVZ完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068797
求助须知:如何正确求助?哪些是违规求助? 4290368
关于积分的说明 13367314
捐赠科研通 4110189
什么是DOI,文献DOI怎么找? 2250823
邀请新用户注册赠送积分活动 1256000
关于科研通互助平台的介绍 1188539