What factors contribute to the acceptance of artificial intelligence? A systematic review

期望理论 斯科普斯 系统回顾 技术接受模型 计算机科学 可用性 知识管理 心理学 社会心理学 梅德林 政治学 人机交互 法学
作者
Sage Kelly,Sherrie-Anne Kaye,Óscar Oviedo-Trespalacios
出处
期刊:Telematics and Informatics [Elsevier BV]
卷期号:77: 101925-101925 被引量:369
标识
DOI:10.1016/j.tele.2022.101925
摘要

Artificial Intelligence (AI) agents are predicted to infiltrate most industries within the next decade, creating a personal, industrial, and social shift towards the new technology. As a result, there has been a surge of interest and research towards user acceptance of AI technology in recent years. However, the existing research appears dispersed and lacks systematic synthesis, limiting our understanding of user acceptance of AI technologies. To address this gap in the literature, we conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and meta-Analysis guidelines using five databases: EBSCO host, Embase, Inspec (Engineering Village host), Scopus, and Web of Science. Papers were required to focus on both user acceptance and AI technology. Acceptance was defined as the behavioural intention or willingness to use, buy, or try a good or service. A total of 7912 articles were identified in the database search. Sixty articles were included in the review. Most studies (n = 31) did not define AI in their papers, and 38 studies did not define AI for their participants. The extended Technology Acceptance Model (TAM) was the most frequently used theory to assess user acceptance of AI technologies. Perceived usefulness, performance expectancy, attitudes, trust, and effort expectancy significantly and positively predicted behavioural intention, willingness, and use behaviour of AI across multiple industries. However, in some cultural scenarios, it appears that the need for human contact cannot be replicated or replaced by AI, no matter the perceived usefulness or perceived ease of use. Given that most of the methodological approaches present in the literature have relied on self-reported data, further research using naturalistic methods is needed to validate the theoretical model/s that best predict the adoption of AI technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗中翠完成签到,获得积分10
刚刚
吃书的猪完成签到,获得积分10
刚刚
1秒前
4秒前
韭菜发布了新的文献求助10
5秒前
碧蓝的以彤完成签到,获得积分10
8秒前
Forizix发布了新的文献求助10
8秒前
wang发布了新的文献求助10
8秒前
万能图书馆应助mazhihao采纳,获得10
9秒前
852应助韭菜采纳,获得10
9秒前
10秒前
炙热的皮皮虾给炙热的皮皮虾的求助进行了留言
12秒前
wang完成签到,获得积分20
13秒前
3542002发布了新的文献求助10
17秒前
一一应助橘如采纳,获得10
17秒前
HEIKU应助温柔又莲采纳,获得10
18秒前
LDDDGR发布了新的文献求助10
18秒前
21秒前
Bear完成签到 ,获得积分10
25秒前
Alex完成签到,获得积分20
25秒前
25秒前
26秒前
鲸医完成签到,获得积分10
28秒前
幸运星完成签到,获得积分10
29秒前
Super齐完成签到,获得积分10
30秒前
鲸医发布了新的文献求助10
31秒前
kk完成签到,获得积分10
32秒前
SciGPT应助务实的听筠采纳,获得10
32秒前
32秒前
33秒前
Super齐发布了新的文献求助10
36秒前
mazhihao发布了新的文献求助10
37秒前
snsnf发布了新的文献求助10
38秒前
务实的听筠完成签到,获得积分20
38秒前
破晓完成签到,获得积分10
39秒前
大个应助hana采纳,获得10
40秒前
温柔又莲完成签到,获得积分10
41秒前
42秒前
45秒前
CodeCraft应助美好的小馒头采纳,获得10
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332370
捐赠科研通 3063467
什么是DOI,文献DOI怎么找? 1681747
邀请新用户注册赠送积分活动 807681
科研通“疑难数据库(出版商)”最低求助积分说明 763864