Semi-supervised segmentation of coronary DSA using mixed networks and multi-strategies

计算机科学 分割 人工智能 卷积神经网络 模式识别(心理学) 概率逻辑 像素 深度学习 聚类分析 数据挖掘 机器学习
作者
Pu Yao,Qinghua Zhang,Cheng Qian,Quan Zeng,Na Li,Lijuan Zhang,Shoujun Zhou,Gang Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:156: 106493-106493 被引量:9
标识
DOI:10.1016/j.compbiomed.2022.106493
摘要

The coronary arteries supply blood to the myocardium, which originate from the root of the aorta and mainly branch into the left and right. X-ray digital subtraction angiography (DSA) is a technique for evaluating coronary artery plaques and narrowing, that is widely used because of its time efficiency and cost-effectiveness. However, automated coronary vessel classification and segmentation remains challenging using a little data. Therefore, the purpose of this study is twofold: one is to propose a more robust method for vessel segmentation, the other is to provide a solution that is feasible with a small amount of labeled data. Currently, there are three main types of vessel segmentation methods, i.e., graphical- and statistical-based; clustering theory based, and deep learning-based methods for pixel-by-pixel probabilistic prediction, among which the last method is the mainstream with high accuracy and automation. Under this trend, an Inception-SwinUnet (ISUnet) network combining the convolutional neural network and Transformer basic module was proposed in this paper. Considering that data-driven fully supervised learning (FSL) segmentation methods require a large set of paired data with high-quality pixel-level annotation, which is expertise-demanding and time-consuming, we proposed a Semi-supervised Learning (SSL) method to achieve better performance with a small amount of labeled and unlabeled data. Different from the classical SSL method, i.e., Mean-Teacher, our method used two different networks for cross-teaching as the backbone. Meanwhile, inspired by deep supervision and confidence learning (CL), two effective strategies for SSL were adopted, which were denominated Pyramid-consistency Learning (PL) and Confidence Learning (CL), respectively. Both were designed to filter the noise and improve the credibility of pseudo labels generated by unlabeled data. Compared with existing methods, ours achieved superior segmentation performance over other FSL and SSL ones by using data with a small equal number of labels. Code is available in https://github.com/Allenem/SSL4DSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西瓜完成签到,获得积分10
1秒前
SYLH应助犹豫的天问采纳,获得10
3秒前
3秒前
abc发布了新的文献求助10
3秒前
李紫硕发布了新的文献求助10
3秒前
优雅的忆南完成签到 ,获得积分10
4秒前
4秒前
long完成签到,获得积分10
5秒前
XJ完成签到,获得积分10
6秒前
XXXXX完成签到,获得积分20
6秒前
7秒前
Ken77发布了新的文献求助10
9秒前
优雅烨伟发布了新的文献求助10
9秒前
leihaha发布了新的文献求助10
10秒前
可爱的函函应助壮观以松采纳,获得10
10秒前
fst完成签到 ,获得积分10
10秒前
11秒前
13秒前
菠萝吃多发布了新的文献求助10
16秒前
16秒前
leihaha完成签到,获得积分10
16秒前
17秒前
柯一一应助abc采纳,获得10
17秒前
abiden发布了新的文献求助30
19秒前
20秒前
22秒前
23秒前
泥泥完成签到,获得积分10
23秒前
尔信完成签到 ,获得积分10
23秒前
壮观以松发布了新的文献求助10
24秒前
哈哈哈发布了新的文献求助10
25秒前
丘比特应助优雅烨伟采纳,获得10
25秒前
泥泥发布了新的文献求助200
27秒前
mzone完成签到,获得积分10
28秒前
28秒前
28秒前
czt发布了新的文献求助10
30秒前
huhuan完成签到,获得积分10
30秒前
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd Edition 4000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3926901
求助须知:如何正确求助?哪些是违规求助? 3471572
关于积分的说明 10968830
捐赠科研通 3201436
什么是DOI,文献DOI怎么找? 1768777
邀请新用户注册赠送积分活动 857654
科研通“疑难数据库(出版商)”最低求助积分说明 796109