Scalable imaging-free spatial genomics through computational reconstruction

计算机科学 条形码 空间分析 可扩展性 背景(考古学) 基因组学 图像分辨率 数据挖掘 人工智能 模式识别(心理学) 生物 基因组 遥感 数据库 地理 古生物学 生物化学 基因 操作系统
作者
Chenlei Hu,Mehdi Borji,Giovanni Marrero,Vipin Kumar,Jackson A. Weir,Sachin V. Kammula,Evan Z. Macosko,Fei Chen
标识
DOI:10.1101/2024.08.05.606465
摘要

Abstract Tissue organization arises from the coordinated molecular programs of cells. Spatial genomics maps cells and their molecular programs within the spatial context of tissues. However, current methods measure spatial information through imaging or direct registration, which often require specialized equipment and are limited in scale. Here, we developed an imaging-free spatial transcriptomics method that uses molecular diffusion patterns to computationally reconstruct spatial data. To do so, we utilize a simple experimental protocol on two dimensional barcode arrays to establish an interaction network between barcodes via molecular diffusion. Sequencing these interactions generates a high dimensional matrix of interactions between different spatial barcodes. Then, we perform dimensionality reduction to regenerate a two-dimensional manifold, which represents the spatial locations of the barcode arrays. Surprisingly, we found that the UMAP algorithm, with minimal modifications can faithfully successfully reconstruct the arrays. We demonstrated that this method is compatible with capture array based spatial transcriptomics/genomics methods, Slide-seq and Slide-tags, with high fidelity. We systematically explore the fidelity of the reconstruction through comparisons with experimentally derived ground truth data, and demonstrate that reconstruction generates high quality spatial genomics data. We also scaled this technique to reconstruct high-resolution spatial information over areas up to 1.2 centimeters. This computational reconstruction method effectively converts spatial genomics measurements to molecular biology, enabling spatial transcriptomics with high accessibility, and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小饼干1029发布了新的文献求助10
刚刚
打打应助栈逸采纳,获得30
刚刚
九九我完成签到,获得积分10
1秒前
Tingting发布了新的文献求助10
1秒前
Jamie完成签到,获得积分20
1秒前
天天快乐应助哈哈采纳,获得10
1秒前
浮游应助sube采纳,获得10
1秒前
1秒前
1秒前
上官若男应助ZHANG采纳,获得10
1秒前
2秒前
2秒前
gqb发布了新的文献求助30
2秒前
朱元璋发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
2秒前
CodeCraft应助MeiyanZou采纳,获得30
3秒前
3秒前
禛禛发布了新的文献求助10
3秒前
任小萱完成签到,获得积分10
4秒前
大个应助彪壮的砖家采纳,获得10
4秒前
faye发布了新的文献求助10
4秒前
5秒前
义气珩完成签到,获得积分10
5秒前
叶成会完成签到,获得积分10
5秒前
5秒前
VDC发布了新的文献求助30
5秒前
stella发布了新的文献求助10
5秒前
JamesPei应助空间采纳,获得10
5秒前
jiayi发布了新的文献求助10
5秒前
Keep发布了新的文献求助10
6秒前
NexusExplorer应助开心的耳机采纳,获得10
7秒前
7秒前
爱科研的睿崽完成签到,获得积分10
7秒前
JinyuGuo完成签到,获得积分20
7秒前
7秒前
wml应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427790
求助须知:如何正确求助?哪些是违规求助? 4541692
关于积分的说明 14178129
捐赠科研通 4459258
什么是DOI,文献DOI怎么找? 2445268
邀请新用户注册赠送积分活动 1436498
关于科研通互助平台的介绍 1413803