A depth graph attention-based multi-channel transfer learning network for fluid classification from logging data

物理 图形 学习迁移 传输(计算) 频道(广播) 登录中 人工智能 理论计算机科学 计算机网络 计算机科学 生态学 生物 并行计算
作者
Hengxiao Li,Sibo Qiao,Youzhuang Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:3
标识
DOI:10.1063/5.0232487
摘要

Fluid classification is a fundamental task in the field of geological sciences to achieve effective reservoir characterization and hydrocarbon exploration. Traditional fluid classification methods are often limited by long processing times and an inability to capture complex relationships within the data. To address this issue, this paper proposes a novel deep learning approach—the Deep Graph Attention Multi-channel Transfer Learning Network (DGMT), aimed at improving the efficiency and accuracy of fluid classification from logging data. This model comprises three key components: a graph attention layer, a multi-channel feature extractor, and a transfer learning module. The graph attention layer is designed to handle spatial dependencies between different logging channels, enhancing classification accuracy by focusing on critical features. The multi-channel feature extractor integrates information from various data sources, ensuring comprehensive utilization of the rich information in logging data. The transfer learning module allows the model to transfer knowledge from pre-trained models of similar tasks, accelerating the training process and significantly improving the model's generalization ability and robustness. This feature enables the DGMT model to adapt to different geological environments and logging conditions, showing superior performance over traditional methods. To validate the effectiveness of the DGMT model, we conducted experiments on actual logging datasets containing multiple oil wells. The experimental results indicate that, compared to common machine learning algorithms and other deep learning methods, the DGMT model significantly improves in accuracy and other classification performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
sophyia发布了新的文献求助10
2秒前
老板别打烊完成签到,获得积分10
3秒前
朱朱朱完成签到,获得积分10
6秒前
包勇发布了新的文献求助10
6秒前
7秒前
wei发布了新的文献求助10
8秒前
10秒前
10秒前
善学以致用应助陈江河采纳,获得10
11秒前
11秒前
烟花应助踏山河采纳,获得10
11秒前
体贴花卷发布了新的文献求助10
12秒前
13秒前
独特雨灵完成签到,获得积分20
15秒前
阳光蛋挞发布了新的文献求助10
15秒前
17秒前
小猪发布了新的文献求助10
17秒前
18秒前
Ma发布了新的文献求助10
19秒前
19秒前
怕孤单的安蕾完成签到 ,获得积分10
21秒前
22秒前
陈江河发布了新的文献求助10
22秒前
23秒前
Zjjj0812发布了新的文献求助10
24秒前
24秒前
24秒前
梁海萍发布了新的文献求助10
25秒前
25秒前
灵巧雨寒完成签到,获得积分10
26秒前
赘婿应助Zjjj0812采纳,获得10
26秒前
斯文败类应助Ma采纳,获得10
27秒前
爆米花应助lijyuuu采纳,获得10
27秒前
踏山河发布了新的文献求助10
27秒前
Ice发布了新的文献求助10
29秒前
灵巧雨寒发布了新的文献求助10
29秒前
包勇完成签到,获得积分10
29秒前
maomao发布了新的文献求助10
30秒前
zhangzhuopu发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171475
求助须知:如何正确求助?哪些是违规求助? 3706954
关于积分的说明 11695834
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860819
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754