Predicting pathological complete response following neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer using merged model integrating MRI-based radiomics and deep learning data

医学 接收机工作特性 无线电技术 结直肠癌 人工智能 放化疗 深度学习 完全响应 新辅助治疗 病态的 队列 放射科 临床试验 机器学习 文本挖掘 肿瘤科 交叉验证 曲线下面积
作者
Haidi Lu,Yuan Yuan,Minglu Liu,Zhihui Li,Xiaolu Ma,Yuwei Xia,Feng Shi,Yong Lu,Jianping Lu,Fu Shen
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1): 289-289 被引量:5
标识
DOI:10.1186/s12880-024-01474-3
摘要

Abstract Background To construct and compare merged models integrating clinical factors, MRI-based radiomics features and deep learning (DL) models for predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Methods Totally 197 patients with LARC administered surgical resection after nCRT were assigned to cohort 1 (training and test sets); meanwhile, 52 cases were assigned to cohort 2 as a validation set. Radscore and DL models were established for predicting pCR applying pre- and post-nCRT MRI data, respectively. Different merged models integrating clinical factors, Radscore and DL model were constituted. Their predictive performances were validated and compared by receiver operating characteristic (ROC) and decision curve analyses (DCA). Results Merged models were established integrating selected clinical factors, Radscore and DL model for pCR prediction. The areas under the ROC curves (AUCs) of the pre-nCRT merged model were 0.834 (95% CI: 0.737–0.931) and 0.742 (95% CI: 0.650–0.834) in test and validation sets, respectively. The AUCs of the post-nCRT merged model were 0.746 (95% CI: 0.636–0.856) and 0.737 (95% CI: 0.646–0.828) in test and validation sets, respectively. DCA showed that the pretreatment algorithm could yield enhanced clinically benefit than the post-nCRT approach. Conclusions The pre-nCRT merged model including clinical factors, Radscore and DL model constitutes an effective non-invasive tool for pCR prediction in LARC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助wy.he采纳,获得10
1秒前
lgf完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
Orange应助凉小远采纳,获得10
3秒前
无花果应助苹果采纳,获得10
3秒前
乔杰完成签到 ,获得积分10
3秒前
YingjiaHu发布了新的文献求助10
3秒前
nenoaowu发布了新的文献求助10
4秒前
暴富发布了新的文献求助10
4秒前
思源应助aa采纳,获得10
5秒前
水草精发布了新的文献求助10
5秒前
gogo完成签到,获得积分10
6秒前
和谐的忆文完成签到,获得积分10
7秒前
clay发布了新的文献求助10
9秒前
9秒前
雪白冥茗完成签到 ,获得积分10
10秒前
11秒前
NEO完成签到,获得积分10
11秒前
11秒前
NexusExplorer应助朴素八宝粥采纳,获得10
13秒前
14秒前
14秒前
852应助西红柿采纳,获得10
14秒前
15秒前
15秒前
美好斓发布了新的文献求助50
16秒前
深情安青应助七七采纳,获得10
16秒前
17秒前
李健应助川ccc采纳,获得10
17秒前
SANBEISHUI发布了新的文献求助10
18秒前
aa发布了新的文献求助10
18秒前
香菜兔子完成签到,获得积分10
19秒前
科研通AI6应助炙热怜寒采纳,获得10
20秒前
充电宝应助光亮的代萱采纳,获得10
20秒前
21秒前
暴富完成签到,获得积分10
21秒前
诗谙发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534