Generative AI in orthopedics: an explainable deep few-shot image augmentation pipeline for plain knee radiographs and Kellgren-Lawrence grading

骨科手术 骨关节炎 深度学习 人工智能 医学 射线照相术 分级(工程) 基本事实 口腔正畸科 膝关节手术 计算机科学 医学物理学 放射科 外科 工程类 病理 替代医学 土木工程
作者
Nickolas Littlefield,Soheyla Amirian,Jacob T. Biehl,Edward Andrews,Michael R. Kann,Nicole Myers,Leah Reid,Adolph J. Yates,Brian J. McGrory,Bambang Parmanto,Thorsten M. Seyler,Johannes F. Plate,Hooman H. Rashidi,Ahmad P. Tafti
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (11): 2668-2678 被引量:2
标识
DOI:10.1093/jamia/ocae246
摘要

Abstract Objectives Recently, deep learning medical image analysis in orthopedics has become highly active. However, progress has been restricted by the absence of large-scale and standardized ground-truth images. To the best of our knowledge, this study is the first to propose an innovative solution, namely a deep few-shot image augmentation pipeline, that addresses this challenge by synthetically generating knee radiographs for training downstream tasks, with a specific focus on knee osteoarthritis Kellgren-Lawrence (KL) grading. Materials and Methods This study leverages a deep few-shot image augmentation pipeline to generate synthetic knee radiographs. Despite the limited availability of training samples, we demonstrate the capability of our proposed computational strategy to produce high-fidelity plain knee radiographs and use them to successfully train a KL grade classifier. Results Our experimental results showcase the effectiveness of the proposed computational pipeline. The generated synthetic radiographs exhibit remarkable fidelity, evidenced by the achieved average Frechet Inception Distance (FID) score of 26.33 for KL grading and 22.538 for bilateral knee radiographs. For KL grading classification, the classifier achieved a test Cohen’s Kappa and accuracy of 0.451 and 0.727, respectively. Our computational strategy also resulted in a publicly and freely available imaging dataset of 86 000 synthetic knee radiographs. Conclusions Our approach demonstrates the capability to produce top-notch synthetic knee radiographs and use them for KL grading classification, even when working with a constrained training dataset. The results obtained emphasize the effectiveness of the pipeline in augmenting datasets for knee osteoarthritis research, opening doors for broader applications in orthopedics, medical image analysis, and AI-powered diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助搞怪莫茗采纳,获得10
1秒前
汉堡包应助Gioia采纳,获得10
1秒前
1秒前
少年完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
liuliu发布了新的文献求助10
4秒前
曾经大地完成签到,获得积分20
4秒前
桐桐应助柔之采纳,获得10
4秒前
4秒前
我不该你的吧完成签到,获得积分10
5秒前
5秒前
5秒前
小寒同学发布了新的文献求助10
5秒前
5秒前
今后应助可怜崽崽采纳,获得10
6秒前
hehe发布了新的文献求助10
6秒前
星辰大海应助YeeLeeLee采纳,获得10
6秒前
莘晟发布了新的文献求助10
7秒前
完美世界应助changyongcheng采纳,获得10
8秒前
凌霄宝殿发布了新的文献求助10
8秒前
9秒前
爆米花应助白鲸采纳,获得10
9秒前
9秒前
舒心的芸发布了新的文献求助10
9秒前
万能图书馆应助loc1101采纳,获得10
9秒前
orixero应助ZL采纳,获得10
10秒前
科研通AI6应助Iris采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
shilong.yang发布了新的文献求助10
12秒前
Largequail发布了新的文献求助10
12秒前
852应助老白的乌鸦采纳,获得10
13秒前
13秒前
13秒前
牛帮帮发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262276
求助须知:如何正确求助?哪些是违规求助? 4423286
关于积分的说明 13769277
捐赠科研通 4297943
什么是DOI,文献DOI怎么找? 2358148
邀请新用户注册赠送积分活动 1354541
关于科研通互助平台的介绍 1315696