Research on variety identification of common bean seeds based on hyperspectral and deep learning

化学 高光谱成像 鉴定(生物学) 多样性(控制论) 人工智能 植物 生物 计算机科学
作者
Shujia Li,Laijun Sun,Xiuliang Jin,Guojun Feng,Lingyu Zhang,Hongyi Bai,Ziyue Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:326: 125212-125212 被引量:8
标识
DOI:10.1016/j.saa.2024.125212
摘要

Accurate, fast and non-destructive identification of varieties of common bean seeds is important for the cultivation and efficient utilization of common beans. This study is based on hyperspectral and deep learning to identify the varieties of common bean seeds non-destructively. In this study, the average spectrum of 3078 hyperspectral images from 500 varieties was obtained after image segmentation and sensitive region extraction, and the Synthetic Minority Over-sampling Technique (SMOTE) was used to achieve the equilibrium of the samples of various varieties. A one-dimensional convolutional neural network model (IResCNN) incorporating Inception module and residual structure was proposed to identify seed varieties, and Support Vector Machine (SVM), K-Nearest Neighbor (KNN), VGG19, AlexNet, ResNet50 were established to compare the identification effect. After analyzing the effects of multiple spectral preprocessing methods on the model, the study selected Savitzky-Golay smoothing correction (SG) for spectral preprocessing and extracted 66 characteristic wavelengths using Successive Projections Algorithm (SPA) as inputs to the discriminative model. Ultimately, the IResCNN model achieved the highest accuracy of 93.06 % on the test set, indicating that hyperspectral technology can accurately identify bean varieties, and the study provides a correct method of thinking for the non-destructive classification of multi-species small-sample bean varieties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助活泼的萝卜采纳,获得10
2秒前
2秒前
英俊的铭应助分风吹采纳,获得10
2秒前
nnn发布了新的文献求助10
2秒前
黄平平发布了新的文献求助10
3秒前
3秒前
4秒前
Hello应助672采纳,获得10
5秒前
曾谢发布了新的文献求助10
7秒前
豆浆烩面发布了新的文献求助10
8秒前
正直指甲油完成签到,获得积分10
9秒前
9秒前
9秒前
624794951发布了新的文献求助10
9秒前
菜根谭完成签到 ,获得积分10
9秒前
11秒前
11秒前
12秒前
hsj发布了新的文献求助10
14秒前
浮游应助mm采纳,获得10
14秒前
彼岸完成签到 ,获得积分10
14秒前
15秒前
睡个大觉应助耍酷芙蓉采纳,获得20
15秒前
豆儿嘚小豆儿完成签到,获得积分10
15秒前
分风吹发布了新的文献求助10
16秒前
Angleli完成签到,获得积分10
17秒前
7分运气发布了新的文献求助10
18秒前
ljloveljj完成签到,获得积分10
18秒前
Cat4pig完成签到 ,获得积分10
19秒前
20秒前
21秒前
YH关闭了YH文献求助
21秒前
轩xuan完成签到 ,获得积分10
21秒前
B哥完成签到,获得积分10
22秒前
菜鸟完成签到,获得积分20
22秒前
裘问薇完成签到,获得积分10
22秒前
zzzz完成签到,获得积分10
23秒前
斯文败类应助MechaniKer采纳,获得10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306656
求助须知:如何正确求助?哪些是违规求助? 4452467
关于积分的说明 13854686
捐赠科研通 4339942
什么是DOI,文献DOI怎么找? 2382901
邀请新用户注册赠送积分活动 1377781
关于科研通互助平台的介绍 1345487