WTDUN: Wavelet Tree-Structured Sampling and Deep Unfolding Network for Image Compressed Sensing

计算机科学 小波 图像(数学) 人工智能 采样(信号处理) 树(集合论) 压缩传感 计算机视觉 模式识别(心理学) 计算机图形学(图像) 数学分析 数学 滤波器(信号处理)
作者
Kai Han,Jin Wang,Yunhui Shi,HanQin Cai,Nam Ling,Baocai Yin
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3701731
摘要

Deep unfolding networks have gained increasing attention in the field of compressed sensing (CS) owing to their theoretical interpretability and superior reconstruction performance. However, most existing deep unfolding methods often face the following issues: 1) they learn directly from single-channel images, leading to a simple feature representation that does not fully capture complex features; and 2) they treat various image components uniformly, ignoring the characteristics of different components. To address these issues, we propose a novel wavelet-domain deep unfolding framework named WTDUN, which operates directly on the multi-scale wavelet subbands. Our method utilizes the intrinsic sparsity and multi-scale structure of wavelet coefficients to achieve a tree-structured sampling and reconstruction, effectively capturing and highlighting the most important features within images. Specifically, the design of tree-structured reconstruction aims to capture the inter-dependencies among the multi-scale subbands, enabling the identification of both fine and coarse features, which can lead to a marked improvement in reconstruction quality. Furthermore, a wavelet domain adaptive sampling method is proposed to greatly improve the sampling capability, which is realized by assigning measurements to each wavelet subband based on its importance. Unlike pure deep learning methods that treat all components uniformly, our method introduces a targeted focus on important subbands, considering their energy and sparsity. This targeted strategy lets us capture key information more efficiently while discarding less important information, resulting in a more effective and detailed reconstruction. Extensive experimental results on various datasets validate the superior performance of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小广完成签到,获得积分10
2秒前
2秒前
芬枫疯完成签到 ,获得积分10
2秒前
3秒前
燃点完成签到,获得积分10
3秒前
科研通AI5应助小鬼頭采纳,获得10
4秒前
领导范儿应助暴走火箭筒采纳,获得10
5秒前
是真的完成签到 ,获得积分10
5秒前
miuu完成签到,获得积分10
7秒前
9秒前
狂野静曼完成签到 ,获得积分10
10秒前
wshwx发布了新的文献求助10
12秒前
Sephirex发布了新的文献求助30
13秒前
16秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
17秒前
彭于晏应助科研通管家采纳,获得10
19秒前
19秒前
香蕉觅云应助科研通管家采纳,获得20
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
19秒前
lwl666应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
secbox完成签到,获得积分10
20秒前
21秒前
22秒前
靓丽衫完成签到 ,获得积分10
22秒前
24秒前
Malmever发布了新的文献求助10
25秒前
海人发布了新的文献求助10
28秒前
28秒前
KKKZ发布了新的文献求助10
29秒前
Malmever完成签到,获得积分10
31秒前
slk完成签到 ,获得积分10
32秒前
氯雷他定完成签到 ,获得积分10
35秒前
36秒前
王某人完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776393
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207833
捐赠科研通 3037129
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870