Unveiling hormone‐stimulated gene mechanisms in prostate cancer: A prognostic model, immune infiltration analysis, and drug sensitivity study

前列腺癌 免疫系统 激素 基因 肿瘤科 内科学 医学 癌症研究 计算生物学 生物信息学 生物 癌症 免疫学 遗传学 内分泌学
作者
Zhongru Fan,Qianqian Yu,Junpeng Deng,Ke Wang,Hongqi Yu,Xin Fan,Jian‐Jun Xie
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (5): 3238-3252
标识
DOI:10.1002/tox.24118
摘要

Abstract Hormones promote the progression of prostate cancer (PRCA) through the activation of a complex regulatory network. Inhibition of hormones or modulation of specific network nodes alone is insufficient to suppress the entire oncogenic network. Therefore, it is imperative to elucidate the mechanisms underlying the occurrence and development of PRCA in order to identify reliable diagnostic markers and therapeutic targets. To this end, we used publicly available data to analyze the potential mechanisms of hormone‐stimulated genes in PRCA, construct a prognostic model, and assess immune infiltration and drug sensitivity. The single‐cell RNA‐sequencing data of PRCA were subjected to dimensionality reduction clustering and annotation, and the cells were categorized into two groups based on hormone stimulus‐related scores. The differentially expressed genes between the two groups were screened and incorporated into the least absolute shrinkage and selection operator machine learning algorithm, and a prognostic model comprising six genes (ZNF862, YIF1A, USP22, TAF7, SRSF3, and SPARC) was constructed. The robustness of the model was validation through multiple methods. Immune infiltration scores in the two risk groups were calculated using three different algorithms. In addition, the relationship between the model genes and immune cell infiltration, and that between risk score and immune cell infiltration were analyzed. Drug sensitivity analysis was performed for the model genes and risk score using public databases to identify potential candidate drugs. Our findings provide novel insights into the mechanisms of hormone‐stimulated genes in PRCA progression, prognosis, and drug screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
研友_VZG7GZ应助meizijiu采纳,获得10
4秒前
顺利静竹完成签到,获得积分20
4秒前
5秒前
5秒前
科研通AI5应助古清采纳,获得10
5秒前
水桶完成签到,获得积分10
6秒前
ding应助淼淼1采纳,获得10
6秒前
7秒前
学术小白完成签到,获得积分10
8秒前
1号选手发布了新的文献求助10
8秒前
天天快乐应助顺利小蝴蝶采纳,获得10
10秒前
zz发布了新的文献求助10
12秒前
Able阿拉基发布了新的文献求助10
12秒前
14秒前
王小豆完成签到,获得积分10
14秒前
Gyy完成签到,获得积分10
15秒前
肖雪依完成签到,获得积分10
16秒前
16秒前
fanyy完成签到 ,获得积分10
17秒前
17秒前
18秒前
Eraaaaa发布了新的文献求助10
19秒前
墨尘发布了新的文献求助30
20秒前
zyw完成签到,获得积分10
20秒前
20秒前
SciGPT应助hxd采纳,获得10
21秒前
枓研通管家完成签到,获得积分10
21秒前
mimosal发布了新的文献求助10
22秒前
Lucas应助南浅采纳,获得10
22秒前
Wind发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
zho应助hhan采纳,获得10
23秒前
HY发布了新的文献求助10
24秒前
25秒前
小二郎应助墨尘采纳,获得30
25秒前
笑点低的牛二完成签到 ,获得积分10
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110