Unsupervised Learning for Solving AC Optimal Power Flows: Design, Analysis, and Experiment

计算机科学 电力系统 功率(物理) 功率流 物理 量子力学
作者
Wanjun Huang,Minghua Chen,Steven H. Low
出处
期刊:IEEE Transactions on Power Systems [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 7102-7114 被引量:1
标识
DOI:10.1109/tpwrs.2024.3373399
摘要

With the increasing penetration of renewables, AC optimal power flow (AC-OPF) problems need to be solved more frequently for reliable and economic power system operation. Supervised learning approaches have been developed to solve AC-OPF problems fast and accurately. However, due to the non-convexity of AC-OPF problems, it is non-trivial and computationally expensive to prepare a large training dataset, and multiple load-solution mappings may exist to impair learning even if the dataset is available. In this paper, we develop an unsupervised learning approach ( DeepOPF-NGT ) that does not require ground truths. DeepOPF-NGT utilizes a properly designed loss function to guide neural networks in directly learning a legitimate load-solution mapping. Kron reduction is used to remove the zero-injection buses from the prediction. To tackle the unbalanced gradient pathologies known to deteriorate the learning performance, we develop an adaptive learning rate algorithm to dynamically balance the gradient contributions from different loss terms during training. Further, we derive conditions for unsupervised learning to learn a legitimate load-solution mapping and avoid the multiple mapping issue in supervised learning. Results of the 39/118/300/1354- bus systems show that DeepOPF-NGT achieves optimality, feasibility, and speedup performance comparable to the state-of-the-art supervised approaches and better than the unsupervised ones, and a few ground truths can further improve its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行走的鱼发布了新的文献求助10
刚刚
像风一样自由完成签到 ,获得积分10
2秒前
Strongly完成签到,获得积分10
2秒前
2秒前
小舀发布了新的文献求助10
3秒前
LBJ发布了新的文献求助10
3秒前
顾北发布了新的文献求助10
3秒前
shss完成签到,获得积分20
3秒前
科研通AI6应助sun采纳,获得10
4秒前
orixero应助ee_Liu采纳,获得10
4秒前
4秒前
win完成签到,获得积分10
5秒前
西西完成签到 ,获得积分10
5秒前
独狼完成签到 ,获得积分10
6秒前
高贵小兔子发布了新的文献求助150
6秒前
6秒前
6秒前
共享精神应助兴奋硬币采纳,获得30
7秒前
淡白的努力完成签到,获得积分20
7秒前
在水一方应助JIAYIWANG采纳,获得10
7秒前
zz完成签到,获得积分10
7秒前
苗自中完成签到,获得积分10
7秒前
8秒前
8秒前
cc发布了新的文献求助10
8秒前
yikiann完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
火力全开完成签到,获得积分10
10秒前
11秒前
SciGPT应助飘逸曼彤采纳,获得10
12秒前
zz发布了新的文献求助20
12秒前
大朋完成签到,获得积分10
12秒前
NexusExplorer应助卡其嘛亮采纳,获得10
12秒前
苗自中发布了新的文献求助20
12秒前
甘海斌发布了新的文献求助10
12秒前
李热热完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664