材料科学
锂(药物)
金属
分离器(采油)
储能
密度泛函理论
纳米技术
化学工程
冶金
阳极
热力学
电极
计算化学
物理化学
化学
内分泌学
工程类
功率(物理)
物理
医学
作者
Xintai Xie,Lei Wei,Jianhao Lu,Ao Xu,Baochun Wang,Xueying Xiao,Anbang Wang,Zhaoqing Jin,Zhicong Shi,Weikun Wang
标识
DOI:10.1016/j.ensm.2024.103323
摘要
Lithium metal anodes possessing a high theoretical specific capacity and low redox potential are considered the most promising materials for high-energy-density Li metal batteries (LMBs). However, safety concerns due to the growth of lithium dendrites and short-cycle lifetime issues due to more side reactions have hindered the practical implementation of LMBs. To alleviate the above problems and further improve the safeness and cycling stability of LMBs, a Li-Nafion@Laponite-XLG@PP (LNLX@PP) based functional separator is proposed. The as-optimized functional separator (LNLX-30@PP) not only has high ionic conductivity (8.4 × 10−4 S cm−1), Li+ transfer number (0.8), and high mechanical properties, but also induces the formation of a strong LiF-rich SEI and hinders anionic shuttling through electrostatic shielding effects. As a result, the Li|LNLX-30@PP |Li symmetric cells can stably cycle for 650 h under high current density (2 mA cm−2) and high charge-discharge capacity (4 mA h cm−2). Furthermore, this approach enables more than 1000 cycles at 3 C with high coulomb efficiency of 99.9 % in LFP||Li coin cells and achieve an actual initial energy density of 322 Wh kg−1 and more than 100 stable cycles at 0.2 C in an assembled Li-S pouch cell with S loading of ∼9.3 mg cm−2. This work will inspire the design of hybrid functional separators for advanced Li metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI