Thermal deformation behavior investigation of Ti–10V–5Al-2.5fe-0.1B titanium alloy based on phenomenological constitutive models and a machine learning method

材料科学 均方误差 流变学 相关系数 近似误差 热力学 均方根 数学 统计 复合材料 物理 量子力学
作者
Shuai Zhang,Haoyu Zhang,Xuejia Liu,Shengyuan Wang,Chuan Wang,Ge Zhou,Siqian Zhang,Lijia Chen
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:29: 589-608 被引量:32
标识
DOI:10.1016/j.jmrt.2024.01.120
摘要

The two-phase titanium alloy Ti–10 V–5Al-2.5Fe-0.1 B was taken as the experimental material, and thermal compression experiments were carried out at a deformation temperature of 770–920 °C and a strain rate of 0.0005–0.5 s−1. An Arrhenius model, a modified Johnson-Cook model, and an improved BP neural network model based on the sparrow search algorithm (SSA-BP) model were established to predict the high temperature rheological stress of the alloy. A comparison of the prediction accuracy of the three models was made. When the partial random data in the rheological curves was used for model building and relatively independent data were used for predicting the rheological stress, the SSA-BP model had higher prediction accuracy, which exhibits the highest mean square correlation coefficient (R2) value of 0.9992 and the lowest root mean square error (RMSE) and average absolute relative error (AARE) values of 1.3031, and 2.0947 %, respectively. The ability of three models to predict the rheological stress for the new process parameters was verified. Results show that the SSA-BP model still has better prediction ability, which exhibits the highest mean square correlation coefficient (R2) value of 0.9720 and the lowest root mean square error (RMSE) and average absolute relative error (AARE) values of 5.0099, and 6.0382 %, respectively. The predicted values of SSA-BP for the rheological stress were used to construct the hot processing map. Results show that the trend of the power dissipation factor (η) value from the hot processing map predicted by SSA-BP can well agree with the microstructure evolution of the alloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nacho发布了新的文献求助10
刚刚
威武的rotlight完成签到,获得积分10
刚刚
arf发布了新的文献求助20
刚刚
科研通AI6应助笑点低静柏采纳,获得10
1秒前
晰默发布了新的文献求助10
2秒前
zzz发布了新的文献求助10
2秒前
kenna123发布了新的文献求助10
2秒前
苏休夫发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助qiuzhiqi采纳,获得10
3秒前
3秒前
尊敬映真完成签到,获得积分10
3秒前
认真的跳跳糖完成签到 ,获得积分10
3秒前
3秒前
mlty00完成签到,获得积分10
4秒前
沐阳d发布了新的文献求助10
4秒前
5秒前
5秒前
大猫完成签到,获得积分10
6秒前
爆米花应助冷艳的鸣凤采纳,获得10
6秒前
夏天搞科研完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
斯文败类应助yangzhang采纳,获得10
8秒前
nine发布了新的文献求助10
8秒前
9秒前
顾矜应助长情诗蕾采纳,获得20
9秒前
孙友浩发布了新的文献求助10
9秒前
香蕉觅云应助激昂的凡灵采纳,获得10
9秒前
9秒前
西西完成签到,获得积分10
10秒前
sunwei发布了新的文献求助10
10秒前
10秒前
读书娃儿发布了新的文献求助10
10秒前
10秒前
10秒前
JIANGNANYAN发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647788
求助须知:如何正确求助?哪些是违规求助? 4774392
关于积分的说明 15041599
捐赠科研通 4806799
什么是DOI,文献DOI怎么找? 2570412
邀请新用户注册赠送积分活动 1527196
关于科研通互助平台的介绍 1486288