Micro-Expression Recognition Based on Nodal Efficiency in the EEG Functional Networks

节的 脑电图 表达式(计算机科学) 模式识别(心理学) 计算机科学 语音识别 人工智能 心理学 神经科学 生物 程序设计语言 解剖
作者
Xingcong Zhao,Jiejia Chen,Tong Chen,Ying Liu,Shiyuan Wang,Xiaomei Zeng,Jilong Yan,Guangyuan Liu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 887-894 被引量:2
标识
DOI:10.1109/tnsre.2023.3347601
摘要

Micro-expression recognition based on ima- ges has made some progress, yet limitations persist. For instance, image-based recognition of micro-expressions is affected by factors such as ambient light, changes in head posture, and facial occlusion. The high temporal resolution of electroencephalogram (EEG) technology can record brain activity associated with micro-expressions and identify them objectively from a neurophysiological standpoint. Accordingly, this study introduces a novel method for recognizing micro-expressions using node efficiency features of brain networks derived from EEG signals. We designed a real-time Supervision and Emotional Expression Suppression (SEES) experimental paradigm to collect video and EEG data reflecting micro- and macro-expression states from 70 participants experiencing positive emotions. By constructing functional brain networks based on graph theory, we analyzed the network efficiencies at both macro- and micro-levels. The participants exhibited lower connection density, global efficiency, and nodal efficiency in the alpha, beta, and gamma networks during micro-expressions compared to macro-expressions. We then selected the optimal subset of nodal efficiency features using a random forest algorithm and applied them to various classifiers, including Support Vector Machine (SVM), Gradient-Boosted Decision Tree (GBDT), Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost). These classifiers achieved promising accuracy in micro-expression recognition, with SVM exhibiting the highest accuracy of 92.6% when 15 channels were selected. This study provides a new neuroscientific indicator for recognizing micro-expressions based on EEG signals, thereby broadening the potential applications for micro-expression recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WEN完成签到,获得积分10
2秒前
2秒前
null应助何嘉欣采纳,获得10
3秒前
迷人宛亦发布了新的文献求助10
3秒前
漓漓子完成签到 ,获得积分10
3秒前
5秒前
5秒前
体贴电源完成签到 ,获得积分10
5秒前
无花果应助艾查恩采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
医路向前完成签到 ,获得积分10
8秒前
狮子座发布了新的文献求助10
8秒前
爱卿萌萌哒完成签到 ,获得积分20
8秒前
万能图书馆应助奈奈泥采纳,获得10
8秒前
9秒前
朴素砖家发布了新的文献求助10
9秒前
Lucy发布了新的文献求助20
9秒前
soufle完成签到,获得积分10
10秒前
13秒前
XS_QI发布了新的文献求助50
13秒前
靜心发布了新的文献求助20
13秒前
兔子发布了新的文献求助10
13秒前
14秒前
14秒前
Iq发布了新的文献求助10
14秒前
Yim发布了新的文献求助30
15秒前
房房房完成签到,获得积分20
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
爱卿萌萌哒关注了科研通微信公众号
18秒前
慕青应助迷人宛亦采纳,获得10
18秒前
18秒前
海洋完成签到,获得积分10
18秒前
21秒前
大模型应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
阿弹应助科研通管家采纳,获得20
22秒前
高分求助中
Organic Chemistry 20086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4293271
求助须知:如何正确求助?哪些是违规求助? 3819821
关于积分的说明 11961275
捐赠科研通 3463014
什么是DOI,文献DOI怎么找? 1899589
邀请新用户注册赠送积分活动 947821
科研通“疑难数据库(出版商)”最低求助积分说明 850494