Improved PSO-SVM-Based Fault Diagnosis Algorithm for Wind Power Converter

支持向量机 粒子群优化 算法 断层(地质) 计算机科学 稳健性(进化) 平滑的 人工智能 生物化学 化学 地震学 计算机视觉 基因 地质学
作者
Hao Zhang,Xiaoqiang Guo,Pinjia Zhang
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:60 (2): 3492-3501 被引量:25
标识
DOI:10.1109/tia.2023.3341059
摘要

Due to the complexity of the working environment of wind power generation systems, wind turbine power converters (WPC) can experience different types of faults. Traditional fault diagnosis methods suffer from issues such as the need for additional hardware, low accuracy, long execution time, and applicability only to small sample offline fault diagnosis. In order to address these problems, this article proposes a particle swarm optimization-based support vector machine (SVM) algorithm. The algorithm combines PSO algorithm, SVM algorithm, and moving average algorithm to effectively improve the robustness and accuracy of the fault diagnosis algorithm, while reducing the execution time and cost. This article selects three-phase current signals and bus voltage signals as fault diagnosis data, and then uses the moving average algorithm to process the fault data of the power converter, retaining the data features based on effectively smoothing the data. Finally, an improved particle swarm algorithm is used to construct a fault diagnosis model based on support vector machines for diagnosing open circuit faults in the power converter. In a dataset containing 9800 training samples and 4200 testing samples, the accuracy of the training samples is 98.898%, and the accuracy of the testing samples is 98.4524%. This effectively solves the problem of traditional SVM methods being only able to handle small batches of nonlinear datasets. Finally, this article compares the proposed fault diagnosis method with other types and similar types of fault diagnosis methods, verifying the effectiveness and superiority of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jjjxy发布了新的文献求助10
刚刚
刚刚
Jasper应助yuji采纳,获得10
1秒前
领导范儿应助ggbond采纳,获得20
3秒前
Duck完成签到,获得积分10
3秒前
3秒前
3秒前
NexusExplorer应助ankang采纳,获得10
4秒前
SciGPT应助啊懂采纳,获得10
5秒前
寒冷不凡发布了新的文献求助10
5秒前
堂yt发布了新的文献求助10
5秒前
7秒前
RUINNNO完成签到,获得积分10
8秒前
liwhao完成签到,获得积分10
9秒前
9秒前
好困好困好困yyy完成签到 ,获得积分10
9秒前
所所应助漂亮的素采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
顾矜应助寒冷不凡采纳,获得10
12秒前
热情的乘风完成签到,获得积分10
12秒前
13秒前
自由谷梦完成签到,获得积分10
13秒前
14秒前
15秒前
liupeng关注了科研通微信公众号
16秒前
科研通AI6应助开心的觅山采纳,获得20
16秒前
yy发布了新的文献求助10
18秒前
dirk完成签到,获得积分10
18秒前
科研通AI6应助13344采纳,获得10
19秒前
19秒前
深情安青应助zzz采纳,获得10
19秒前
MFiWanting完成签到,获得积分10
19秒前
honya完成签到 ,获得积分10
20秒前
李健应助堂yt采纳,获得10
21秒前
21秒前
科研通AI2S应助自由谷梦采纳,获得10
22秒前
wxyshare应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626080
求助须知:如何正确求助?哪些是违规求助? 4711833
关于积分的说明 14957236
捐赠科研通 4780332
什么是DOI,文献DOI怎么找? 2554090
邀请新用户注册赠送积分活动 1515915
关于科研通互助平台的介绍 1476138