A decision-making of autonomous driving method based on DDPG with pretraining

计算机科学 心理学
作者
Jinlin Ma,Mingyu Zhang,Kaiping Ma,Houzhong Zhang,Guoqing Geng
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:239 (5): 1505-1516 被引量:3
标识
DOI:10.1177/09544070241227303
摘要

Present the DDPGwP (DDPG with Pretraining) model, grounded in the framework of deep reinforcement learning, designed for autonomous driving decision-making. The model incorporates imitation learning by utilizing expert experience for supervised learning during initial training and weight preservation. A novel loss function is devised, enabling the expert experience to jointly guide the Actor network’s update alongside the Critic network while also participating in the Critic network’s updates. This approach allows imitation learning to dominate the early stages of training, with reinforcement learning taking the lead in later stages. Employing experience replay buffer separation techniques, we categorize and store collected superior, ordinary, and expert experiences. We select sensor inputs from the TORCS (The Open Racing Car Simulator) simulation platform and conduct experimental validation, comparing the results with the original DDPG, A2C, and PPO algorithms. Experimental outcomes reveal that incorporating imitation learning significantly accelerates early-stage training, reduces blind trial-and-error during initial exploration, and enhances algorithm stability and safety. The experience replay buffer separation technique improves sampling efficiency and mitigates algorithm overfitting. In addition to expediting algorithm training rates, our approach enables the simulated vehicle to learn superior strategies, garnering higher reward values. This demonstrates the superior stability, safety, and policy-making capabilities of the proposed algorithm, as well as accelerated network convergence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的蛋糕完成签到,获得积分10
刚刚
何禾完成签到,获得积分10
刚刚
刚刚
研友_8RyzBZ发布了新的文献求助10
刚刚
浩气长存完成签到 ,获得积分10
1秒前
buxiangshangxue完成签到 ,获得积分10
1秒前
西海沉完成签到,获得积分10
1秒前
2秒前
打打应助lt采纳,获得10
2秒前
2秒前
NovermberRain发布了新的文献求助10
2秒前
婷婷孔发布了新的文献求助10
3秒前
执着的水杯完成签到,获得积分10
3秒前
freshabc完成签到,获得积分10
4秒前
jing完成签到,获得积分10
4秒前
4秒前
巫马夜安完成签到,获得积分0
5秒前
5秒前
西瓜橙子完成签到,获得积分10
5秒前
小T儿完成签到,获得积分10
5秒前
Cate完成签到,获得积分10
7秒前
11完成签到,获得积分10
7秒前
7秒前
研友_8RyzBZ完成签到,获得积分20
7秒前
歪歪象完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
wxh完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
神奇的种子完成签到,获得积分10
9秒前
ZYK完成签到,获得积分10
9秒前
小薛完成签到,获得积分10
9秒前
9秒前
NovermberRain完成签到,获得积分10
10秒前
wdl完成签到,获得积分10
11秒前
AbeleChuang完成签到,获得积分10
11秒前
凡夫俗子完成签到 ,获得积分10
11秒前
燕真完成签到,获得积分10
12秒前
drughunter009发布了新的文献求助10
12秒前
妩媚的海应助小费采纳,获得50
12秒前
李思超发布了新的文献求助240
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671831
求助须知:如何正确求助?哪些是违规求助? 4921904
关于积分的说明 15136269
捐赠科研通 4830672
什么是DOI,文献DOI怎么找? 2587207
邀请新用户注册赠送积分活动 1540954
关于科研通互助平台的介绍 1499329