Trajectory-as-a-Sequence: A novel travel mode identification framework

鉴定(生物学) 弹道 序列(生物学) 模式(计算机接口) 计算机科学 人机交互 生物 物理 遗传学 植物 天文
作者
Junwen Zeng,Yi Yu,Yong Chen,Di Yang,Lei Zhang,Dianhai Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:146: 103957-103957 被引量:5
标识
DOI:10.1016/j.trc.2022.103957
摘要

Identifying travel modes from GPS tracks, as an essential technique to understand the travel behavior of a population, has received widespread interest over the past decade. While most previous Travel Mode Identification (TMI) methods separately identify the mode of each track segment of a GPS trajectory, in this paper, we propose a sequence-based TMI framework that constructs a feature sequence for each GPS trajectory and sent it to a sequence-to-sequence (seq2seq) model to obtain the corresponding travel mode label sequence, named Trajectory-as-a-Sequence (TaaS). The proposed seq2seq model consists of a Convolutional Encoder (CE) and a Recurrent Conditional Random Field (RCRF), where the CE extracts high-level features from the point-level trajectory features and the RCRF learns the context information of trajectories at both feature and label levels, thus outputting accurate and reasonable travel mode label sequences. To alleviate the lack of data, we adopted a two-stage model training strategy. Additionally, we design two novel bus-related features to assist the seq2seq model distinguishing different high-speed travel modes (i.e., bus, car, and railway) in the sequence. Besides the classical performance metrics such as accuracy, we propose a new metric that evaluates the rationality of the travel mode label sequence at the trajectory level. Comprehensive evaluations corresponding to the real-world TMI applications show that the sequence-based TaaS outperforms the segment-based models in practice. Furthermore, the results of ablation studies demonstrate that the elements integrated into the TaaS framework are helpful to improve the efficiency and accuracy of TMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重元蝶发布了新的文献求助10
刚刚
小西完成签到 ,获得积分10
2秒前
Chase完成签到,获得积分10
5秒前
lxlcx完成签到,获得积分10
8秒前
11秒前
14秒前
Skyrin完成签到,获得积分0
16秒前
小白白完成签到 ,获得积分10
16秒前
香蕉秋寒发布了新的文献求助30
19秒前
元锦程完成签到,获得积分10
19秒前
24秒前
511完成签到 ,获得积分10
29秒前
lizhiqian2024发布了新的文献求助10
34秒前
哈哈哈完成签到 ,获得积分10
35秒前
瘦瘦的迎梦完成签到 ,获得积分10
36秒前
HCLonely完成签到,获得积分0
36秒前
YY完成签到,获得积分10
37秒前
博ge完成签到 ,获得积分10
39秒前
Jackson333完成签到,获得积分10
42秒前
浪浪山完成签到,获得积分10
43秒前
西洲完成签到 ,获得积分10
45秒前
Estella完成签到 ,获得积分10
46秒前
无限的含羞草完成签到,获得积分10
46秒前
lizhiqian2024发布了新的文献求助10
49秒前
甜甜圈发布了新的文献求助10
52秒前
52秒前
故酒应助科研通管家采纳,获得10
52秒前
顾矜应助科研通管家采纳,获得10
52秒前
大个应助科研通管家采纳,获得10
53秒前
领导范儿应助科研通管家采纳,获得30
53秒前
53秒前
JamesPei应助科研通管家采纳,获得10
53秒前
rayqiang完成签到,获得积分0
53秒前
涂涂完成签到 ,获得积分10
54秒前
54秒前
Tree完成签到 ,获得积分10
55秒前
落后翠柏发布了新的文献求助10
59秒前
1分钟前
香蕉秋寒完成签到,获得积分10
1分钟前
don完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726