Kick-scooters identification in the context of transportation mode detection using inertial sensors: Methods and accuracy

公共交通 背景(考古学) 模式(计算机接口) 运输工程 工作(物理) 鉴定(生物学) 行人 计算机科学 工程类 人机交互 地理 植物 机械工程 生物 考古
作者
F. Taia Alaoui,Hassen Fourati,Alain Y. Kibangou,Bogdan Robu,Nicolas Vuillerme
出处
期刊:Journal of Intelligent Transportation Systems [Taylor & Francis]
卷期号:: 1-21 被引量:2
标识
DOI:10.1080/15472450.2022.2141118
摘要

This work presents a novel transportation mode detection algorithm that handles the recognition of kick-scooters. In 2015, 10 minutes of data from a kick-scooter were considered in a transportation mode detection study, yielding a 56% F1-score. Since then, kick-scooters were not given much attention. Yet, kick-scooters are now very present in the urban transportation ecosystem, and their consideration in transportation studies has become a must. To fill this gap, 4 hours of kick-scooter signals were collected by 18 participants, with a set of 6 different kick-scooters, using 3 body-worn inertial measurement units. Obviously, kick-scooter patterns are classified in contrast with other modes of transportation. Two classification scenarios are considered in order to gradually increase the classification model complexity. The first scenario includes walking, biking, and kick-scooter, while the second considers public transport (tramway and bus) in addition to the former transportation modes. Results show that kick-scooters can be detected with an F1-score of 80% in the first scenario. Walking and public transport samples were still accurately classified in the second scenario, with an F1-score above 80% for both classes. However, bike and kick-scooter samples were both classified with lower F1-scores, equal to 59% and 64% respectively. Therefore, the main focus of future works should be directed toward the separability of kick-scooters and bikes when public transport is considered. The findings also suggest to place preferably the sensors in the trouser’s pocket, allowing for leg motion to be finely captured.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助细腻秋烟采纳,获得10
1秒前
hangzhen完成签到,获得积分10
1秒前
shuyou发布了新的文献求助10
1秒前
1秒前
研友_LJpvdZ完成签到,获得积分10
2秒前
2秒前
3秒前
大方的太君完成签到,获得积分10
3秒前
小杏韵发布了新的文献求助10
4秒前
Ava应助可爱奇异果采纳,获得10
4秒前
kjaiod完成签到,获得积分20
4秒前
传奇3应助辛勤又蓝采纳,获得10
4秒前
4秒前
Hello应助卡皮巴拉采纳,获得10
5秒前
量子星尘发布了新的文献求助30
6秒前
6秒前
小马甲应助laowang采纳,获得10
6秒前
6秒前
6秒前
7秒前
coco发布了新的文献求助10
7秒前
7秒前
你好完成签到,获得积分10
7秒前
7秒前
8秒前
ss发布了新的文献求助10
8秒前
传奇3应助量子星尘采纳,获得20
8秒前
酷波er应助白象采纳,获得10
8秒前
9秒前
似水流年完成签到 ,获得积分10
9秒前
9秒前
9秒前
luanzhaohui发布了新的文献求助10
10秒前
CodeCraft应助江峰采纳,获得10
11秒前
斯文败类应助量子星尘采纳,获得100
11秒前
传奇3应助rhx采纳,获得10
11秒前
李健应助CR采纳,获得10
11秒前
12秒前
大个应助科研通管家采纳,获得10
13秒前
研友_LJpvdZ发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4701321
求助须知:如何正确求助?哪些是违规求助? 4069548
关于积分的说明 12582446
捐赠科研通 3769697
什么是DOI,文献DOI怎么找? 2081862
邀请新用户注册赠送积分活动 1109495
科研通“疑难数据库(出版商)”最低求助积分说明 987621