Ultrasound Image–Based Deep Features and Radiomics for the Discrimination of Small Fat-Poor Angiomyolipoma and Small Renal Cell Carcinoma

人工智能 支持向量机 模式识别(心理学) 无线电技术 超声波 特征选择 放射科 深度学习 医学 计算机科学
作者
Li Zhang,Kui Sun,Liting Shi,Jianfeng Qiu,Ximing Wang,Shumin Wang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:49 (2): 560-568 被引量:7
标识
DOI:10.1016/j.ultrasmedbio.2022.10.009
摘要

We evaluated the performance of ultrasound image-based deep features and radiomics for differentiating small fat-poor angiomyolipoma (sfp-AML) from small renal cell carcinoma (SRCC). This retrospective study included 194 patients with pathologically proven small renal masses (diameter ≤4 cm; 67 in the sfp-AML group and 127 in the SRCC group). We obtained 206 and 364 images from the sfp-AML and SRCC groups with experienced radiologist identification, respectively. We extracted 4024 deep features from the autoencoder neural network and 1497 radiomics features from the Pyradiomics toolbox; the latter included first-order, shape, high-order, Laplacian of Gaussian and Wavelet features. All subjects were allocated to the training and testing sets with a ratio of 3:1 using stratified sampling. The least absolute shrinkage and selection operator (LASSO) regression model was applied to select the most diagnostic features. Support vector machine (SVM) was adopted as the discriminative classifier. An optimal feature subset including 45 deep and 7 radiomics features was screened by the LASSO model. The SVM classifier achieved good performance in discriminating between sfp-AMLs and SRCCs, with areas under the curve (AUCs) of 0.96 and 0.85 in the training and testing sets, respectively. The classifier built using deep and radiomics features can accurately differentiate sfp-AMLs from SRCCs on ultrasound imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flj7038完成签到,获得积分0
1秒前
一帆风顺发布了新的文献求助10
2秒前
orixero应助一叶扁舟。采纳,获得10
2秒前
inspirx发布了新的文献求助10
3秒前
yyy完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
顾矜应助大侦探皮卡丘采纳,获得10
7秒前
7秒前
trans完成签到,获得积分10
10秒前
10秒前
11秒前
CipherSage应助景C采纳,获得10
13秒前
re完成签到,获得积分10
14秒前
wwss发布了新的文献求助10
15秒前
15秒前
英姑应助海绵baobao采纳,获得10
16秒前
cdercder应助泽锦臻采纳,获得10
17秒前
科研通AI5应助桥辉采纳,获得10
17秒前
18秒前
19秒前
yn发布了新的文献求助10
21秒前
Jsl完成签到,获得积分10
23秒前
23秒前
三三发布了新的文献求助10
23秒前
gty发布了新的文献求助10
24秒前
喵喵666完成签到,获得积分10
24秒前
洪汉发布了新的文献求助10
26秒前
27秒前
28秒前
甜美青槐发布了新的文献求助10
30秒前
情红锐完成签到,获得积分10
30秒前
30秒前
31秒前
Ava应助yn采纳,获得10
31秒前
大模型应助Time采纳,获得10
31秒前
桥辉发布了新的文献求助10
32秒前
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842910
求助须知:如何正确求助?哪些是违规求助? 3384948
关于积分的说明 10538145
捐赠科研通 3105498
什么是DOI,文献DOI怎么找? 1710345
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774157