Exploring augmentation strategies in mixed reality for autonomous driving with depth cameras

计算机科学 虚拟现实 过程(计算) 集合(抽象数据类型) 增强现实 混合现实 人工智能 代表(政治) 质量(理念) 噪音(视频) 对象(语法) 传感器融合 人机交互 计算机视觉 图像(数学) 哲学 认识论 政治 政治学 法学 程序设计语言 操作系统
作者
Imane Argui,Maxime Guériau,Samia Aïnouz
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:47 (7): 1455-1465
标识
DOI:10.1177/01423312241296919
摘要

One significant challenge in improving autonomous driving algorithms is the lack of diverse real-world data. Moreover, transferring models from simulation to reality faces the reality gap problem. This study addresses this issue by developing an augmentation technique for mixed-reality environments, aimed at improving the testing and training of autonomous vehicles. Tested offline, it lays the groundwork for future online applications. The methodology focuses on creating virtual depth images using a virtual camera and applying an augmentation strategy to the KITTI data set. This creates a mixed-reality representation by combining virtual and real depth maps, leveraging depth information in the fusion process. The outcomes of this process are notably effective, achieving a balance between virtual and real-world aspects. This fusion method adeptly combines elements from both environments, maintaining the quality of the images. The novel contributions of this work include a detailed augmentation strategy that seamlessly integrates virtual objects into real depth maps, accounting for occlusions and ensuring realistic depth representations. In addition, this work demonstrates the feasibility of generating a large data set using the proposed method, significantly expanding the available data for training autonomous driving models. The use of metrics such as SSIM, peak signal-to-noise ratio (PSNR), and MAE, alongside object detection models such as Faster RCNN, provides a complete evaluation of both quantitative and qualitative aspects. The results demonstrate the quality of the augmented images, setting a foundation for potential online applications. The proposed strategy enables the generation of larger data set and facilitates safe, effective training in scenarios considered too risky or challenging to simulate accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想飞的猪发布了新的文献求助10
3秒前
深情安青应助YDX采纳,获得10
3秒前
科研波比发布了新的文献求助10
3秒前
3秒前
曾泳钧完成签到,获得积分10
4秒前
zxyxy完成签到 ,获得积分10
4秒前
7秒前
7秒前
lhy完成签到,获得积分20
8秒前
香蕉大侠完成签到 ,获得积分10
8秒前
8秒前
生动白安完成签到,获得积分10
9秒前
jesi发布了新的文献求助200
9秒前
活泼飞柏发布了新的文献求助10
10秒前
10秒前
10秒前
聪慧航空发布了新的文献求助10
11秒前
obaica完成签到,获得积分10
11秒前
Owen应助心灵美剑封采纳,获得10
11秒前
11秒前
ambernameswu发布了新的文献求助10
12秒前
俏皮元珊发布了新的文献求助10
13秒前
CQ发布了新的文献求助10
14秒前
14秒前
456发布了新的文献求助10
15秒前
15秒前
15秒前
pyl关注了科研通微信公众号
15秒前
YDX完成签到,获得积分10
16秒前
123321完成签到,获得积分10
16秒前
小詹发布了新的文献求助10
17秒前
18秒前
顾矜应助chang000采纳,获得10
18秒前
烟花应助cherish采纳,获得10
18秒前
xiang完成签到,获得积分10
19秒前
悠悠完成签到 ,获得积分10
19秒前
20秒前
YDX发布了新的文献求助10
20秒前
本喵才不会喵呢完成签到,获得积分10
20秒前
ang完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296872
求助须知:如何正确求助?哪些是违规求助? 4445936
关于积分的说明 13837692
捐赠科研通 4330953
什么是DOI,文献DOI怎么找? 2377367
邀请新用户注册赠送积分活动 1372651
关于科研通互助平台的介绍 1338148