Advanced Camera-Based Scoliosis Screening via Deep Learning Detection and Fusion of Trunk, Limb, and Skeleton Features

人工智能 计算机科学 后备箱 脊柱侧凸 骨架(计算机编程) 计算机视觉 医学 外科 生物 生态学 程序设计语言
作者
Ziyan Wang,Yi Zhou,Ninghui Xu,Yuqin Zhou,Heran Zhao,Zhi-Yong Chang,Zhigang Hu,Xiaotao Han,Yuke Song,Zuojian Zhou,Tianshu Wang,Tao Yang,Kongfa Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3491855
摘要

Scoliosis significantly impacts quality of life, highlighting the need for effective early scoliosis screening (SS) and intervention. However, current SS methods often involve physical contact, undressing, or radiation exposure. This study introduces an innovative, non-invasive SS approach utilizing a monocular RGB camera that eliminates the need for undressing, sensor attachment, and radiation exposure. We introduce a novel approach that employs Parameterized Human 3D Reconstruction (PH3DR) to reconstruct 3D human models, thereby effectively eliminating clothing obstructions, seamlessly integrated with an ISANet segmentation network, which has been enhanced by Multi-Scale Fusion Attention (MSFA) module we proposed for facilitating the segmentation of distinct human trunk and limb features (HTLF), capturing body surface asymmetries related to scoliosis. Additionally, we propose a Swin Transformer-enhanced CMU-Pose to extract human skeleton features (HSF), identifying skeletal asymmetries crucial for SS. Finally, we develop a fusion model that integrates the HTLF and HSF, combining surface morphology and skeletal features to improve the precision of SS. The experiments demonstrated that PH3DR and MSFA significantly improved the segmentation and extraction of HTLF, whereas ST-based CMU-Pose substantially enhanced the extraction of HSF. Our final model achieved a comparable F1 (0.895 ±0.014) to the best-performing baseline model, with only 0.79% of the parameters and 1.64% of the FLOPs, achieving 36 FPS-significantly higher than the best-performing baseline model (10 FPS). Moreover, our model outperformed two spine surgeons, one less experienced and the other moderately experienced. With its patient-friendly, privacy-preserving, and easily deployable solution, this approach is particularly well-suited for early SS and routine monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默11完成签到,获得积分20
1秒前
1秒前
早点毕业完成签到 ,获得积分10
2秒前
Lucas应助王圆采纳,获得10
2秒前
Lucas应助maolao采纳,获得10
2秒前
痴情的契发布了新的文献求助10
2秒前
2秒前
3秒前
大个应助LXX-k采纳,获得10
3秒前
3秒前
4秒前
科研通AI5应助Caixtmx采纳,获得10
5秒前
小扇完成签到,获得积分10
5秒前
小二郎应助陈媛采纳,获得10
5秒前
5秒前
6秒前
Owen完成签到,获得积分20
6秒前
一二完成签到,获得积分10
7秒前
cwqcqw发布了新的文献求助10
7秒前
zhaoM发布了新的文献求助10
7秒前
8秒前
东方三问发布了新的文献求助10
9秒前
风趣谷槐完成签到,获得积分10
9秒前
竹子发布了新的文献求助10
11秒前
完美世界应助lilili采纳,获得30
11秒前
沈颖完成签到,获得积分10
11秒前
cc碳碳关注了科研通微信公众号
11秒前
12秒前
13秒前
领导范儿应助ppppppppp采纳,获得10
13秒前
13秒前
13秒前
13秒前
邓海霞完成签到,获得积分10
13秒前
14秒前
zl发布了新的文献求助10
14秒前
pluto应助Owen采纳,获得10
14秒前
14秒前
HZ发布了新的文献求助10
15秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790087
求助须知:如何正确求助?哪些是违规求助? 3334781
关于积分的说明 10272224
捐赠科研通 3051278
什么是DOI,文献DOI怎么找? 1674537
邀请新用户注册赠送积分活动 802651
科研通“疑难数据库(出版商)”最低求助积分说明 760828