亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Prediction and Synthesis of Anion Exchange Membranes

人工智能 计算机科学 机器学习 化学 生物化学
作者
Yongjiang Yuan,Pengda Fang,Han Yuan,Xiuyang Zou,Zhe Sun,Feng Yan
出处
期刊:Accounts of materials research [American Chemical Society]
标识
DOI:10.1021/accountsmr.4c00384
摘要

ConspectusAnion exchange membrane fuel cells (AEMFCs) and water electrolyzers (AEMWEs) play a crucial role in the utilization and production of hydrogen energy, offering significant potential for widespread application due to their high energy conversion efficiency and cost-effectiveness. Anion exchange membranes (AEMs) serve the dual purpose of gas isolation and the conduction of OH– ions. However, the poor chemical stability, low ionic conductivity, and inadequate dimensional stability of AEMs hinder the development of AEM-based energy devices. AEMs exhibit a more intricate chemical structure than general polymers, primarily due to their complex composition and unique attributes. This complexity is attributed to varying chain lengths, degrees of branching, and copolymerization compositions. Furthermore, diverse ion types, ion distribution, ion exchange capacity, hydrophilic clusters, electrostatic interactions, and microphase morphology further complicate these characteristics. In the past decade, more than 5,000 references have been dedicated to obtaining high-performance AEMs. Despite the large amount of work conducted during this period, the performance of AEMs still falls short of meeting the actual needs. The trial-and-error method used in designing membrane structures has proven inefficient and costly. Machine learning, a data-driven computational method, leverages existing data and algorithms to predict yet-to-be-discovered properties of materials. Recently, our group and some researchers have utilized machine learning to expedite the process of material discovery and achieve accurate synthesis of high-performance AEMs.In this Account, we summarize the state-of-the-art for the AEMs, encompassing the structure design of cations and polymer backbones, strategies to improve the ion conductivity, and challenges arising from the necessity to achieve a delicate equilibrium among high conductivity, alkaline stability, and dimensional stability. Furthermore, we conduct a comprehensive review of recent breakthroughs in machine learning, specifically analyzing their implications within the context of AEMs. We examine the two primary branches of machine learning, supervised and unsupervised learning, and summarize various machine learning models, discussing the applicability and limitations of different algorithms. It is particularly worth noting that machine learning has the capability to predict the various properties of AEMs, such as conductivity and alkaline stability, and it can even design the structure of AEMs in accordance with the specific performance requirements of energy devices. By effectively screening high-performance membrane structures from millions of unknown candidates, machine learning significantly reduces the development time and cost associated with AEMs. Consequently, this technological advancement accelerates the rapid progress of AEM-based energy devices. Finally, we highlight the current challenge and future potential for machine learning to enable the development of superior AEMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
消逝完成签到 ,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
孙燕应助科研通管家采纳,获得60
23秒前
28秒前
科研小白发布了新的文献求助10
30秒前
38秒前
SHlby发布了新的文献求助10
41秒前
科研小白完成签到,获得积分10
43秒前
传奇3应助SHlby采纳,获得10
1分钟前
十四说四十完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ZaZa完成签到,获得积分10
2分钟前
李健的小迷弟应助小标采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
00完成签到,获得积分10
2分钟前
李健应助斯尼奇采纳,获得10
2分钟前
皮皮蟹完成签到,获得积分20
2分钟前
elizabeth339应助天真千易采纳,获得50
2分钟前
炮炮发布了新的文献求助10
3分钟前
3分钟前
斯尼奇发布了新的文献求助10
3分钟前
斯尼奇完成签到,获得积分10
3分钟前
骆十八完成签到,获得积分10
3分钟前
3分钟前
4分钟前
ll完成签到,获得积分10
4分钟前
ll发布了新的文献求助10
4分钟前
XQQDD完成签到,获得积分10
4分钟前
4分钟前
炮炮完成签到,获得积分10
4分钟前
testmanfuxk完成签到,获得积分10
4分钟前
荣浩宇完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Mong那粒沙发布了新的文献求助10
5分钟前
Mong那粒沙完成签到,获得积分10
6分钟前
ukz37752完成签到,获得积分10
6分钟前
顾矜应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840784
求助须知:如何正确求助?哪些是违规求助? 3382680
关于积分的说明 10526302
捐赠科研通 3102551
什么是DOI,文献DOI怎么找? 1708873
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773557