Machine Learning for Prediction and Synthesis of Anion Exchange Membranes

人工智能 计算机科学 机器学习 化学 生物化学
作者
Yongjiang Yuan,Pengda Fang,Han Yuan,Xiuyang Zou,Zhe Sun,Feng Yan
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:6 (3): 352-365 被引量:2
标识
DOI:10.1021/accountsmr.4c00384
摘要

ConspectusAnion exchange membrane fuel cells (AEMFCs) and water electrolyzers (AEMWEs) play a crucial role in the utilization and production of hydrogen energy, offering significant potential for widespread application due to their high energy conversion efficiency and cost-effectiveness. Anion exchange membranes (AEMs) serve the dual purpose of gas isolation and the conduction of OH– ions. However, the poor chemical stability, low ionic conductivity, and inadequate dimensional stability of AEMs hinder the development of AEM-based energy devices. AEMs exhibit a more intricate chemical structure than general polymers, primarily due to their complex composition and unique attributes. This complexity is attributed to varying chain lengths, degrees of branching, and copolymerization compositions. Furthermore, diverse ion types, ion distribution, ion exchange capacity, hydrophilic clusters, electrostatic interactions, and microphase morphology further complicate these characteristics. In the past decade, more than 5,000 references have been dedicated to obtaining high-performance AEMs. Despite the large amount of work conducted during this period, the performance of AEMs still falls short of meeting the actual needs. The trial-and-error method used in designing membrane structures has proven inefficient and costly. Machine learning, a data-driven computational method, leverages existing data and algorithms to predict yet-to-be-discovered properties of materials. Recently, our group and some researchers have utilized machine learning to expedite the process of material discovery and achieve accurate synthesis of high-performance AEMs.In this Account, we summarize the state-of-the-art for the AEMs, encompassing the structure design of cations and polymer backbones, strategies to improve the ion conductivity, and challenges arising from the necessity to achieve a delicate equilibrium among high conductivity, alkaline stability, and dimensional stability. Furthermore, we conduct a comprehensive review of recent breakthroughs in machine learning, specifically analyzing their implications within the context of AEMs. We examine the two primary branches of machine learning, supervised and unsupervised learning, and summarize various machine learning models, discussing the applicability and limitations of different algorithms. It is particularly worth noting that machine learning has the capability to predict the various properties of AEMs, such as conductivity and alkaline stability, and it can even design the structure of AEMs in accordance with the specific performance requirements of energy devices. By effectively screening high-performance membrane structures from millions of unknown candidates, machine learning significantly reduces the development time and cost associated with AEMs. Consequently, this technological advancement accelerates the rapid progress of AEM-based energy devices. Finally, we highlight the current challenge and future potential for machine learning to enable the development of superior AEMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老福贵儿完成签到,获得积分0
1秒前
2秒前
2秒前
浮游应助141采纳,获得10
2秒前
2秒前
可靠安蕾完成签到 ,获得积分10
2秒前
大妙妙完成签到 ,获得积分10
3秒前
Z趋势完成签到,获得积分10
5秒前
哭泣忆文完成签到,获得积分10
6秒前
6秒前
7秒前
LIUYC完成签到,获得积分10
10秒前
谷粱紫槐发布了新的文献求助10
10秒前
旺仔先生发布了新的文献求助30
11秒前
sgj完成签到,获得积分10
12秒前
感谢发布了新的文献求助10
12秒前
12秒前
开开发布了新的文献求助10
13秒前
七七七完成签到,获得积分10
14秒前
jml完成签到,获得积分10
16秒前
大魔王发布了新的文献求助10
17秒前
将就发布了新的文献求助10
18秒前
zho发布了新的文献求助10
19秒前
橙子发布了新的文献求助50
19秒前
20秒前
香蕉秋蝶完成签到 ,获得积分10
20秒前
tamako完成签到 ,获得积分10
21秒前
21秒前
上官若男应助lJH采纳,获得10
22秒前
文献求助完成签到,获得积分10
22秒前
王博士完成签到,获得积分10
23秒前
Yancy完成签到,获得积分10
24秒前
17764715645发布了新的文献求助100
24秒前
24秒前
Lucas应助竹竿采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
tamako关注了科研通微信公众号
26秒前
Hello应助朴实凌旋采纳,获得10
26秒前
26秒前
月亮发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5165261
求助须知:如何正确求助?哪些是违规求助? 4357648
关于积分的说明 13567706
捐赠科研通 4203653
什么是DOI,文献DOI怎么找? 2305337
邀请新用户注册赠送积分活动 1305237
关于科研通互助平台的介绍 1251624