Machine Learning for Prediction and Synthesis of Anion Exchange Membranes

人工智能 计算机科学 机器学习 化学 生物化学
作者
Yongjiang Yuan,Pengda Fang,Han Yuan,Xiuyang Zou,Zhe Sun,Feng Yan
出处
期刊:Accounts of materials research [American Chemical Society]
标识
DOI:10.1021/accountsmr.4c00384
摘要

ConspectusAnion exchange membrane fuel cells (AEMFCs) and water electrolyzers (AEMWEs) play a crucial role in the utilization and production of hydrogen energy, offering significant potential for widespread application due to their high energy conversion efficiency and cost-effectiveness. Anion exchange membranes (AEMs) serve the dual purpose of gas isolation and the conduction of OH– ions. However, the poor chemical stability, low ionic conductivity, and inadequate dimensional stability of AEMs hinder the development of AEM-based energy devices. AEMs exhibit a more intricate chemical structure than general polymers, primarily due to their complex composition and unique attributes. This complexity is attributed to varying chain lengths, degrees of branching, and copolymerization compositions. Furthermore, diverse ion types, ion distribution, ion exchange capacity, hydrophilic clusters, electrostatic interactions, and microphase morphology further complicate these characteristics. In the past decade, more than 5,000 references have been dedicated to obtaining high-performance AEMs. Despite the large amount of work conducted during this period, the performance of AEMs still falls short of meeting the actual needs. The trial-and-error method used in designing membrane structures has proven inefficient and costly. Machine learning, a data-driven computational method, leverages existing data and algorithms to predict yet-to-be-discovered properties of materials. Recently, our group and some researchers have utilized machine learning to expedite the process of material discovery and achieve accurate synthesis of high-performance AEMs.In this Account, we summarize the state-of-the-art for the AEMs, encompassing the structure design of cations and polymer backbones, strategies to improve the ion conductivity, and challenges arising from the necessity to achieve a delicate equilibrium among high conductivity, alkaline stability, and dimensional stability. Furthermore, we conduct a comprehensive review of recent breakthroughs in machine learning, specifically analyzing their implications within the context of AEMs. We examine the two primary branches of machine learning, supervised and unsupervised learning, and summarize various machine learning models, discussing the applicability and limitations of different algorithms. It is particularly worth noting that machine learning has the capability to predict the various properties of AEMs, such as conductivity and alkaline stability, and it can even design the structure of AEMs in accordance with the specific performance requirements of energy devices. By effectively screening high-performance membrane structures from millions of unknown candidates, machine learning significantly reduces the development time and cost associated with AEMs. Consequently, this technological advancement accelerates the rapid progress of AEM-based energy devices. Finally, we highlight the current challenge and future potential for machine learning to enable the development of superior AEMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaTeXer应助pang采纳,获得30
刚刚
七一琦完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
韩梦完成签到,获得积分10
2秒前
weifeng发布了新的文献求助10
4秒前
4秒前
欣欣完成签到,获得积分10
4秒前
YANG完成签到 ,获得积分10
5秒前
5秒前
5秒前
jusser发布了新的文献求助10
6秒前
manman发布了新的文献求助10
6秒前
万万完成签到,获得积分10
6秒前
cxl发布了新的文献求助10
6秒前
7秒前
8秒前
MaYi完成签到,获得积分10
8秒前
zho应助科研通管家采纳,获得10
8秒前
Rondab应助NiNi采纳,获得10
8秒前
考拉发布了新的文献求助10
8秒前
zhangyu应助科研通管家采纳,获得10
8秒前
zho应助科研通管家采纳,获得10
9秒前
zho应助科研通管家采纳,获得10
9秒前
zhangyu应助科研通管家采纳,获得10
9秒前
LaTeXer应助三金采纳,获得30
9秒前
orixero应助科研通管家采纳,获得10
9秒前
zhangyu应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
小樱发布了新的文献求助10
10秒前
khurram发布了新的文献求助10
11秒前
pomfret完成签到 ,获得积分10
11秒前
YRX发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
zyzy完成签到,获得积分10
11秒前
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4005215
求助须知:如何正确求助?哪些是违规求助? 3545034
关于积分的说明 11292297
捐赠科研通 3281370
什么是DOI,文献DOI怎么找? 1809662
邀请新用户注册赠送积分活动 885409
科研通“疑难数据库(出版商)”最低求助积分说明 810888