FusionGAN: A generative adversarial network for infrared and visible image fusion

鉴别器 计算机科学 保险丝(电气) 人工智能 计算机视觉 发电机(电路理论) 红外线的 增采样 图像融合 生成对抗网络 图像(数学) 图像分辨率 功率(物理) 电信 光学 物理 探测器 量子力学
作者
Jiayi Ma,Wei Yu,Pengwei Liang,Chang Li,Junjun Jiang
出处
期刊:Information Fusion [Elsevier]
卷期号:48: 11-26 被引量:1599
标识
DOI:10.1016/j.inffus.2018.09.004
摘要

Infrared images can distinguish targets from their backgrounds on the basis of difference in thermal radiation, which works well at all day/night time and under all weather conditions. By contrast, visible images can provide texture details with high spatial resolution and definition in a manner consistent with the human visual system. This paper proposes a novel method to fuse these two types of information using a generative adversarial network, termed as FusionGAN. Our method establishes an adversarial game between a generator and a discriminator, where the generator aims to generate a fused image with major infrared intensities together with additional visible gradients, and the discriminator aims to force the fused image to have more details existing in visible images. This enables that the final fused image simultaneously keeps the thermal radiation in an infrared image and the textures in a visible image. In addition, our FusionGAN is an end-to-end model, avoiding manually designing complicated activity level measurements and fusion rules as in traditional methods. Experiments on public datasets demonstrate the superiority of our strategy over state-of-the-arts, where our results look like sharpened infrared images with clear highlighted targets and abundant details. Moreover, we also generalize our FusionGAN to fuse images with different resolutions, say a low-resolution infrared image and a high-resolution visible image. Extensive results demonstrate that our strategy can generate clear and clean fused images which do not suffer from noise caused by upsampling of infrared information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听雨发布了新的文献求助10
1秒前
乐乐应助懵懂的冰海采纳,获得10
1秒前
黄丽完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
养狐狸还是玫瑰完成签到,获得积分10
3秒前
3秒前
3秒前
四叶草发布了新的文献求助10
4秒前
5秒前
bing发布了新的文献求助10
6秒前
拉呀关注了科研通微信公众号
6秒前
7秒前
敦敦发布了新的文献求助50
7秒前
顾矜应助夏至采纳,获得10
7秒前
领导范儿应助豆kl采纳,获得10
8秒前
8秒前
Mico发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助dabriaolga采纳,获得10
9秒前
小帕才完成签到,获得积分10
9秒前
浅笑完成签到,获得积分10
9秒前
冀丂发布了新的文献求助10
10秒前
10秒前
Harry应助好好学习采纳,获得10
10秒前
endothelial完成签到,获得积分10
10秒前
11秒前
zhaolei完成签到 ,获得积分10
11秒前
12秒前
星辰大海应助虫二采纳,获得10
13秒前
13秒前
小蘑菇应助暴躁的问兰采纳,获得10
13秒前
善学以致用应助Mico采纳,获得10
13秒前
浅笑发布了新的文献求助30
14秒前
14秒前
14秒前
MY发布了新的文献求助10
14秒前
阔达宝莹发布了新的文献求助10
14秒前
14秒前
15秒前
jchen完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839