Comprehensive evaluation of skeleton features-based fall detection from Microsoft Kinect v2

计算机科学 人工智能 计算机视觉 骨架(计算机编程)
作者
Mona Saleh Alzahrani,Salma Kammoun Jarraya,Hanêne Ben-Abdallah,Manar Salamah Ali
出处
期刊:Signal, Image and Video Processing [Springer Science+Business Media]
卷期号:13 (7): 1431-1439 被引量:6
标识
DOI:10.1007/s11760-019-01490-9
摘要

Most of the computer vision applications for human activity recognition exploit the fact that body features calculated from a 3D skeleton increase robustness across persons and can lead to higher performance. However, their success in activity recognition, including falls, depends on the correspondence between the human activities and the used joint/part features. To provide for this correspondence, we experimentally evaluate in this paper skeleton features-based fall detection by comparing fall detection performance for different combinations of skeleton features used in previous related works. We determine the skeleton features that best distinguish fall from non-fall frames, and the best performing classifier. In this endeavor, we followed the classical five steps of supervised machine learning: (1) we collected a learning data composed of 42 fall and 37 non-fall videos from FallFree; (2) we extracted and (3) preprocessed the skeleton data of the training set; (4) we extracted each possible skeleton feature; finally (5) we evaluated all extracted and selected features using two main experiments; one of them based on neighborhood component analysis (NCA). In this evaluation, we show that fall detection based on skeleton features has very encouraging accuracy that varies depending on the used features. More specifically, we recommend the following features: 12 features that resulted from NCA experiment, original and normalized distance from Kinect, and the seven features of the upper body part. These features ranked 1st, 2nd, 4th, and 8th on 22 feature sets, with accuracies 99.5%, 99.4%, 97.8%, and 94.5%, respectively. In addition, random forest is the best performing classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
奶味可可完成签到,获得积分10
2秒前
mini完成签到 ,获得积分10
3秒前
恒牙完成签到 ,获得积分10
5秒前
cdercder应助祥子的骆驼采纳,获得10
5秒前
奶味可可发布了新的文献求助10
5秒前
Crisp完成签到,获得积分20
6秒前
8秒前
一个小胖子完成签到,获得积分10
8秒前
8秒前
9秒前
左丘忻完成签到,获得积分10
9秒前
WFLLL发布了新的文献求助10
11秒前
11秒前
11秒前
Xiaoxiao应助远志采纳,获得10
11秒前
机灵柚子应助远志采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得150
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
英姑应助科研通管家采纳,获得10
13秒前
徐zhipei发布了新的文献求助10
13秒前
TT应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
大腚疯猪应助科研通管家采纳,获得60
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
www完成签到 ,获得积分20
14秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729