亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid Identification of Nine Easily Confused Mineral Traditional Chinese Medicines Using Raman Spectroscopy Based on Support Vector Machine

支持向量机 主成分分析 规范化(社会学) 人工智能 模式识别(心理学) 拉曼光谱 计算机科学 生物系统 化学 生物 人类学 光学 物理 社会学
作者
Jing Ming,Long Chen,Yan Cao,Chi Wai Yu,Bisheng Huang,Keli Chen
出处
期刊:Journal of spectroscopy [Hindawi Publishing Corporation]
卷期号:2019: 1-12 被引量:12
标识
DOI:10.1155/2019/6967984
摘要

Mineral traditional Chinese medicines (TCMs) are natural minerals, mineral processing products, and some fossils of animals or animal bones that can be used as medicines. Mineral TCMs are a characteristic part of TCMs and play a unique role in the development of TCMs. Mineral TCMs are usually identified according to their morphological properties such as shape, color, or smell, but it is difficult to separate TCMs that are similar in appearance or smell. In this study, the feasibility of using Raman spectroscopy combined with support vector machine (SVM) for rapid identification of nine easily confused mineral TCMs, i.e., borax, gypsum fibrosum, natrii sulfas exsiccatus, natrii sulfas, alumen, sal ammoniac, quartz, calcite, and yellow croaker otolith, was investigated. Initially, two methods, characteristic intensity data extraction and principal component analysis (PCA), were performed to reduce the dimensionality of spectral data. The identification model was subsequently built by the SVM algorithm. The 3-fold cross validation (3-CV) accuracy of the SVM model established based on extracting characteristic intensity data from spectra pretreated by first derivation was 98.61%, and the prediction accuracies of the training set and validation set were 100%. As for the PCA-SVM model, when the spectra pretreated by vector normalization and the number of principal components (NPC) is 7, the 3-CV accuracy and prediction accuracies all reached 100%. Both models have good performance and strong prediction capacity. These results demonstrate that Raman spectroscopy combined with a powerful SVM algorithm has great potential for providing an effective and accurate identification method for mineral TCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr_an完成签到,获得积分10
24秒前
zhaoty完成签到,获得积分10
28秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
29秒前
scm应助科研通管家采纳,获得30
29秒前
Zy完成签到,获得积分10
37秒前
草木完成签到,获得积分10
56秒前
1分钟前
幻梦如歌完成签到,获得积分0
1分钟前
焦糖完成签到,获得积分10
1分钟前
荀煜祺完成签到,获得积分10
1分钟前
1分钟前
1分钟前
isaac发布了新的文献求助10
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
2分钟前
CodeCraft应助isaac采纳,获得10
2分钟前
scm应助科研通管家采纳,获得30
2分钟前
2分钟前
Lucky发布了新的文献求助10
2分钟前
2分钟前
搜集达人应助Lucky采纳,获得10
2分钟前
overlood完成签到 ,获得积分10
3分钟前
司马立果发布了新的文献求助10
3分钟前
3分钟前
Mr.Kim发布了新的文献求助10
3分钟前
科研通AI5应助司马立果采纳,获得10
3分钟前
Mr.Kim完成签到,获得积分20
3分钟前
梦残斋完成签到 ,获得积分10
4分钟前
可千万不要躺平呀完成签到,获得积分10
4分钟前
天天快乐应助士成采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
DreamLly发布了新的文献求助10
5分钟前
DreamLly完成签到,获得积分10
5分钟前
loewy完成签到,获得积分10
6分钟前
华仔应助科研通管家采纳,获得10
6分钟前
6分钟前
司马立果发布了新的文献求助10
6分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827283
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251