已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic CIN Grades Prediction of Sequential Cervigram Image Using LSTM With Multistate CNN Features

计算机科学 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 图像处理
作者
Zijie Yue,Shuai Ding,Weidong Zhao,Hao Wang,Jie Ma,Youtao Zhang,Yanchun Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 844-854 被引量:42
标识
DOI:10.1109/jbhi.2019.2922682
摘要

Cervical cancer ranks as the second most common cancer in women worldwide. In clinical practice, colposcopy is an indispensable part of screening for cervical intraepithelial neoplasia (CIN) grades and cervical cancer but exhibits high misdiagnosis rate. Existing computer-assisted algorithms for analyzing cervigram images have neglected that colposcopy is a sequential and multistate process, which is unsuitable for clinical applications. In this work, we construct a cervigram-based recurrent convolutional neural network (C-RCNN) to classify different CIN grades and cervical cancer. Convolutional neural networks are leveraged to extract spatial features. We develop a sequence-encoding module to encode discriminative temporal features and a multistate-aware convolutional layer to integrate features from different states of cervigram images. To train and evaluate the performance of C-RCNN, we leveraged a dataset of 4,753 real cervigrams and obtained 96.13% test accuracy with a specificity and sensitivity of 98.22% and 95.09%, respectively. Areas under each receiver operating characteristic curves are above 0.94, proving that visual representations and sequential dynamics can be jointly and effectively optimized in the training phase. Comparative analysis demonstrated the effectiveness of the proposed C-RCNN against competing methods, showing significant improvement over only focusing on a single frame. This architecture can be extended to other applications in medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小董完成签到 ,获得积分10
1秒前
动听文轩完成签到,获得积分10
4秒前
俭朴夜雪完成签到,获得积分10
6秒前
8秒前
9秒前
9秒前
10秒前
cc完成签到,获得积分10
11秒前
Cc完成签到,获得积分10
11秒前
14秒前
fox发布了新的文献求助10
15秒前
李健应助碗碗采纳,获得10
15秒前
在水一方应助舒心初晴采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
林声发布了新的文献求助10
19秒前
赘婿应助fox采纳,获得10
21秒前
核桃应助vicky采纳,获得20
24秒前
fsznc完成签到 ,获得积分0
24秒前
火火火木完成签到 ,获得积分10
26秒前
雨yu完成签到 ,获得积分10
32秒前
莉莉安完成签到 ,获得积分10
34秒前
酷波er应助nulinuli采纳,获得10
36秒前
咿咿呀呀发布了新的文献求助10
39秒前
40秒前
强健的迎波完成签到,获得积分10
42秒前
43秒前
林声完成签到,获得积分10
44秒前
44秒前
Ava应助名金学南采纳,获得30
47秒前
t忒对完成签到 ,获得积分20
48秒前
未夕晴发布了新的文献求助10
48秒前
Wang发布了新的文献求助10
50秒前
美好的惜天完成签到 ,获得积分10
50秒前
会化蝶发布了新的文献求助10
52秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788098
求助须知:如何正确求助?哪些是违规求助? 3333579
关于积分的说明 10262519
捐赠科研通 3049385
什么是DOI,文献DOI怎么找? 1673537
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477