Deep learning-enabled accurate assessment of gait impairments in Parkinson's disease using smartphone videos

作者
Jianda Han,Zhihua Tian,Jialing Wu,Zhang, Kai,Shaohua Li,Baig, Fahd,Peipei Liu,Morgante, Francesca,Vaidyanathan, Ravi,Weiguang Huo
标识
DOI:10.24433/co.7700825.v1
摘要

Gait impairments are among the most prevalent and disabling symptoms in Parkinson's Disease (PD), featuring complex and highly heterogeneous manifestations. Developing methods for routinely and quantitatively assessing gait impairments is vital for understanding personalized disease progression and facilitating tailored treatments; nonetheless, achieving accurate and comprehensive assessments is considerably challenging. Here, we propose a deep learning-based framework to assess gait impairments using smartphone-recorded videos. This framework achieved a high proficiency for predicting PD severity, with a micro-average area under the receiver operating characteristic curve (AUC) of 0.87 and an F1 score of 0.806, comparable to the average performance of three clinical specialists. In addition, it effectively discerned the comprehensive efficacy of medications on gait impairments with a precision of 73.68%. In particular, it demonstrated the ability to discriminate medication-induced fine-granular gait changes beyond the resolution of the Unified Parkinson’s Disease Rating Scale (UPDRS). Furthermore, our interpretable framework enabled the extraction of traditional clinically used motion markers and the discovery of novel digital biomarkers more sensitive to disease progression and medication response than traditional ones. The findings underscore its great potential for efficiently assessing disease progression in clinical and home settings and evaluating disease-modifying effects in clinical trials to promote personalized therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚂蚱别跳发布了新的文献求助10
刚刚
小小发布了新的文献求助10
刚刚
生椰拿铁发布了新的文献求助10
刚刚
我我发布了新的文献求助10
刚刚
刚刚
changmengying完成签到,获得积分10
1秒前
1秒前
bkagyin应助哲水圣采纳,获得10
1秒前
2秒前
yao发布了新的文献求助30
2秒前
2秒前
大模型应助甝虪采纳,获得10
2秒前
无极微光应助Queen采纳,获得20
3秒前
小蘑菇应助诚心无颜采纳,获得10
3秒前
Sonder完成签到 ,获得积分10
4秒前
Dora发布了新的文献求助10
4秒前
xiaolu完成签到,获得积分10
4秒前
完美世界应助杨德帅采纳,获得10
4秒前
在水一方应助haowang采纳,获得10
5秒前
teamguichu完成签到,获得积分10
5秒前
青衫薄完成签到,获得积分10
5秒前
阿飞完成签到,获得积分10
5秒前
摇摇奶昔完成签到,获得积分20
5秒前
英姑应助哈神爱xuex采纳,获得10
6秒前
6秒前
leesc94完成签到 ,获得积分10
6秒前
6秒前
Wang发布了新的文献求助10
6秒前
李玉欣发布了新的文献求助10
7秒前
7秒前
7秒前
神麒小雪完成签到,获得积分10
7秒前
领导范儿应助李奚采纳,获得10
9秒前
9秒前
9秒前
10秒前
小语丝发布了新的文献求助10
10秒前
haowang完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848