Simultaneous Feature Aggregating and Hashing for Compact Binary Code Learning

计算机科学 二进制代码 散列函数 人工智能 模式识别(心理学) 特征(语言学) 二进制数 编码(集合论) 特征提取 数学 算术 集合(抽象数据类型) 计算机安全 语言学 哲学 程序设计语言
作者
Thanh-Toan Do,Khoa Viet Le,Tuan Hoang,Huu Le,Tam Nguyen,Ngai‐Man Cheung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 4954-4969 被引量:14
标识
DOI:10.1109/tip.2019.2913509
摘要

Representing images by compact hash codes is an attractive approach for large-scale content-based image retrieval. In most state-of-the-art hashing-based image retrieval systems, for each image, local descriptors are first aggregated as a global representation vector. This global vector is then subjected to a hashing function to generate a binary hash code. In previous works, the aggregating and the hashing processes are designed independently. Hence these frameworks may generate suboptimal hash codes. In this paper, we first propose a novel unsupervised hashing framework in which feature aggregating and hashing are designed simultaneously and optimized jointly. Specifically, our joint optimization generates aggregated representations that can be better reconstructed by some binary codes. This leads to more discriminative binary hash codes and improved retrieval accuracy. In addition, the proposed method is flexible. It can be extended for supervised hashing. When the data label is available, the framework can be adapted to learn binary codes which minimize the reconstruction loss w.r.t. label vectors. Furthermore, we also propose a fast version of the state-of-the-art hashing method Binary Autoencoder to be used in our proposed frameworks. Extensive experiments on benchmark datasets under various settings show that the proposed methods outperform state-of-the-art unsupervised and supervised hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助kakakaku采纳,获得10
刚刚
123发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得30
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得50
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
lvzhihao发布了新的文献求助10
2秒前
西风漂流应助O美眉采纳,获得10
2秒前
Orange应助cc采纳,获得10
3秒前
4秒前
4秒前
炙热的冰淇淋完成签到,获得积分20
5秒前
科研通AI2S应助Q蒂采纳,获得10
6秒前
6秒前
miracle完成签到,获得积分10
8秒前
Yyyyuy发布了新的文献求助10
9秒前
黑米粥发布了新的文献求助10
9秒前
9秒前
xxt完成签到,获得积分10
9秒前
小马甲应助张婷婷采纳,获得10
9秒前
10秒前
天天向上完成签到,获得积分10
10秒前
10秒前
萨菲罗斯发布了新的文献求助10
11秒前
桐桐应助JUGG采纳,获得10
11秒前
伶俐的静丹完成签到,获得积分20
11秒前
圣迭戈发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462452
求助须知:如何正确求助?哪些是违规求助? 4567179
关于积分的说明 14309253
捐赠科研通 4493038
什么是DOI,文献DOI怎么找? 2461391
邀请新用户注册赠送积分活动 1450497
关于科研通互助平台的介绍 1425841