Using text mining to track changes in travel destination image: the case of Macau

目的地图像 独创性 旅游 广告 中国大陆 目的地营销 大陆 感知 接见者模式 营销 目的地 地理 内容分析 业务 心理学 社会学 计算机科学 中国 定性研究 程序设计语言 社会科学 神经科学 考古
作者
Matthew Tingchi Liu,Yongdan Liu,Ziying Mo,Kai Lam Ng
出处
期刊:Asia Pacific Journal of Marketing and Logistics [Emerald (MCB UP)]
卷期号:33 (2): 371-393 被引量:63
标识
DOI:10.1108/apjml-08-2019-0477
摘要

Purpose Travel websites allow tourists to share their thoughts, beliefs and experiences regarding various travel destinations. In this paper, the researchers demonstrated an approach for destination marketing organisations to explore online tourist-generated content and understand tourists' perceptions of the destination image (DI). Specifically, the researchers initiated an investigation examining how the destination image of Macau changed during the period of 2014–2018 based on user-generated content on travel websites. Design/methodology/approach Web crawlers developed by Python were employed to collect tourists' reviews from both Ctrip and TripAdvisor regarding the theme of “Macau attraction”. A total of 51,191 reviews (41,352 from Ctrip and 9,839 from TripAdvisor) were collected and analysed using the text-mining technique. Findings The results reveal that the frequency of casino-related words decreased in reviews by both international and mainland Chinese tourists. Additionally, international and mainland Chinese tourists perceive the DI of Macau differently. Mainland Chinese tourists are more sensitive to new attractions, while international tourists are not. The study also shows that there are differences between the government-projected DI and the tourist-perceived DI. Only the “City of Culture” and “A World Centre of Tourism and Leisure” have built recognition with tourists. Originality/value Given the easy accessibility of online information from various sources, it is important for destination marketing organisations to analyse and monitor different DI perspectives and adjust their branding strategies for greater effectiveness. This study uncovered the online DI of Macau by using text mining and content analysis of two of the largest travel websites. By analysing and comparing the differences and relationships among the frequently used words of tourist-generated content on these websites, the researchers revealed some interesting findings with important marketing implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JoeJ给研友_Z345g8的求助进行了留言
1秒前
1秒前
1秒前
Fluke应助十三号失眠采纳,获得10
2秒前
英姑应助struggle采纳,获得10
2秒前
明理自行车应助xiong采纳,获得10
3秒前
3秒前
4秒前
斯文尔白发布了新的文献求助10
4秒前
给钱谢谢发布了新的文献求助10
4秒前
5秒前
文静煜城完成签到 ,获得积分10
5秒前
科研通AI6应助kekeli采纳,获得10
5秒前
卓增明完成签到,获得积分10
6秒前
6秒前
FYK发布了新的文献求助10
7秒前
英俊雅绿给英俊雅绿的求助进行了留言
7秒前
8秒前
Nwafu发布了新的文献求助10
8秒前
8秒前
8秒前
可爱的函函应助zxx采纳,获得10
9秒前
9秒前
音游完成签到,获得积分10
11秒前
lwxlvji完成签到,获得积分10
11秒前
11秒前
11秒前
地球发布了新的文献求助10
11秒前
科研通AI2S应助给钱谢谢采纳,获得10
12秒前
12秒前
13秒前
13秒前
复古红完成签到,获得积分10
13秒前
卓妮完成签到,获得积分10
14秒前
wanci应助UY采纳,获得10
14秒前
14秒前
FYK完成签到,获得积分10
15秒前
椰梨完成签到,获得积分10
15秒前
15秒前
顺利涵菡发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131