Predicting densities and elastic moduli of SiO2-based glasses by machine learning

模数 弹性模量 三元运算 Lasso(编程语言) 二进制数 原子间势 集合(抽象数据类型) 材料科学 算法 人工智能 机器学习 计算机科学 功能(生物学) 统计物理学 数学 物理 化学 分子动力学 复合材料 计算化学 生物 算术 进化生物学 量子力学 万维网 程序设计语言
作者
Yong‐Jie Hu,Ge Zhao,Mingfei Zhang,Bin Bin,Tyler Del Rose,Qian Zhao,Qun Zu,Yang Chen,Xuekun Sun,Maarten de Jong,Liang Qi
出处
期刊:npj computational materials [Nature Portfolio]
卷期号:6 (1) 被引量:70
标识
DOI:10.1038/s41524-020-0291-z
摘要

Abstract Chemical design of SiO 2 -based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic bonds and their ordering at different length scales. Here we show that the densities and elastic moduli of SiO 2 -based glasses can be efficiently predicted by machine learning (ML) techniques across a complex compositional space with multiple (>10) types of additive oxides besides SiO 2 . Our machine learning approach relies on a training set generated by high-throughput molecular dynamic (MD) simulations, a set of elaborately constructed descriptors that bridges the empirical statistical modeling with the fundamental physics of interatomic bonding, and a statistical learning/predicting model developed by implementing least absolute shrinkage and selection operator with a gradient boost machine (GBM-LASSO). The predictions of the ML model are comprehensively compared and validated with a large amount of both simulation and experimental data. By just training with a dataset only composed of binary and ternary glass samples, our model shows very promising capabilities to predict the density and elastic moduli for k-nary SiO 2 -based glasses beyond the training set. As an example of its potential applications, our GBM-LASSO model was used to perform a rapid and low-cost screening of many (~10 5 ) compositions of a multicomponent glass system to construct a compositional-property database that allows for a fruitful overview on the glass density and elastic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助zhang005on采纳,获得10
刚刚
tang完成签到,获得积分10
1秒前
打打应助云阳采纳,获得10
2秒前
3秒前
受伤的碧曼完成签到,获得积分20
4秒前
大大小发布了新的文献求助10
5秒前
5秒前
6秒前
Echo完成签到 ,获得积分10
10秒前
强强嘻嘻发布了新的文献求助10
10秒前
10秒前
gyhmm发布了新的文献求助10
12秒前
xcfvxz发布了新的文献求助10
12秒前
blush完成签到 ,获得积分10
13秒前
14秒前
逆风飞扬发布了新的文献求助10
15秒前
zhang005on发布了新的文献求助10
15秒前
潘宋完成签到,获得积分10
16秒前
绿色催化完成签到,获得积分10
16秒前
haoliu完成签到,获得积分10
16秒前
加油鸭鸭鸭完成签到,获得积分10
17秒前
云阳发布了新的文献求助10
19秒前
19秒前
科研通AI5应助十一采纳,获得10
21秒前
随便完成签到 ,获得积分10
22秒前
bfr完成签到,获得积分10
22秒前
111完成签到,获得积分10
23秒前
chuanzhi完成签到,获得积分10
24秒前
叶洛洛完成签到 ,获得积分10
24秒前
不赖床的科研狗完成签到,获得积分10
25秒前
26秒前
LYHUIII发布了新的文献求助10
27秒前
27秒前
到江南散步完成签到,获得积分10
28秒前
Ciyuan发布了新的文献求助10
29秒前
33秒前
Nulix完成签到,获得积分20
34秒前
susan完成签到 ,获得积分10
34秒前
Nulix发布了新的文献求助10
37秒前
轻松元柏完成签到,获得积分10
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Maturation of NMDA receptor-mediated spontaneous postsynaptic currents in the rat locus coeruleus neurons 200
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123