Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning

随机森林 计算机科学 分类器(UML) 人工智能 机器学习 深度学习 特征学习 水准点(测量) 自编码 相似性(几何) 人工神经网络 数据挖掘 药品 图像(数学) 地理 精神科 大地测量学 心理学
作者
Yang Zhang,Yang Qiu,Yuxin Cui,Shichao Liu,Wen Zhang
出处
期刊:Methods [Elsevier BV]
卷期号:179: 37-46 被引量:65
标识
DOI:10.1016/j.ymeth.2020.05.007
摘要

Drug-drug interactions (DDIs) are crucial for public health and patient safety, which has aroused widespread concern in academia and industry. The existing computational DDI prediction methods are mainly divided into four categories: literature extraction-based, similarity-based, matrix operations-based and network-based. A number of recent studies have revealed that integrating heterogeneous drug features is of significant importance for developing high-accuracy prediction models. Meanwhile, drugs that lack certain features could utilize other features to learn representations. However, it also brings some new challenges such as incomplete data, non-linear relations and heterogeneous properties. In this paper, we propose a multi-modal deep auto-encoders based drug representation learning method named DDI-MDAE, to predict DDIs from large-scale, noisy and sparse data. Our method aims to learn unified drug representations from multiple drug feature networks simultaneously using multi-modal deep auto-encoders. Then, we apply four operators on the learned drug embeddings to represent drug-drug pairs and adopt the random forest classifier to train models for predicting DDIs. The experimental results demonstrate the effectiveness of our proposed method for DDI prediction and significant improvement compared to other state-of-the-art benchmark methods. Moreover, we apply a specialized random forest classifier in the positive-unlabeled (PU) learning setting to enhance the prediction accuracy. Experimental results reveal that the model improved by PU learning outperforms the original method DDI-MDAE by 7.1% and 6.2% improvement in AUPR metric respectively on 3-fold cross-validation (3-CV) and 5-fold cross-validation (5-CV). And in F-measure metric, the improved model gains 10.4% and 8.4% improvement over DDI-MDAE respectively on 3-CV and 5-CV. The usefulness of DDI-MDAE is further demonstrated by case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
lizhiqian2024发布了新的文献求助10
1秒前
Fusr完成签到,获得积分10
2秒前
AYEFORBIDER完成签到,获得积分10
2秒前
CipherSage应助zdq10068采纳,获得10
2秒前
可爱的函函应助lulu采纳,获得30
3秒前
5秒前
孜然西瓜发布了新的文献求助10
5秒前
丘比特应助ziyue采纳,获得10
5秒前
5秒前
文俊凯发布了新的文献求助30
6秒前
糖贵人完成签到,获得积分10
6秒前
奋斗梦旋发布了新的文献求助10
6秒前
6秒前
兰兰猪头发布了新的文献求助200
6秒前
殷青完成签到,获得积分10
7秒前
7秒前
7秒前
李健的小迷弟应助小高采纳,获得10
8秒前
真的橘子完成签到,获得积分10
8秒前
一言一木完成签到,获得积分10
8秒前
寒冷的咖啡完成签到,获得积分10
8秒前
9秒前
Jasper应助hana采纳,获得10
9秒前
9秒前
10秒前
10秒前
小粽子发布了新的文献求助10
10秒前
发量巨人发布了新的文献求助10
11秒前
青木蓝发布了新的文献求助10
11秒前
123完成签到,获得积分10
11秒前
pipi发布了新的文献求助10
11秒前
sslou发布了新的文献求助30
11秒前
花痴的夜安完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271