Chemometric Analysis of Lavender Essential Oils Using Targeted and Untargeted GC-MS Acquired Data for the Rapid Identification and Characterization of Oil Quality

薰衣草 薰衣草油 精油 质量标准 鉴定(生物学) 质量(理念) 计算机科学 数学 化学 色谱法 生物 植物 认识论 哲学
作者
David J. Beale,Paul D. Morrison,Avinash V. Karpe,Michael Dunn
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:22 (8): 1339-1339 被引量:60
标识
DOI:10.3390/molecules22081339
摘要

Standard raw material test methods such as the ISO Standard 11024 are focused on the identification of lavender oil and not the actual class/quality of the oil. However, the quality of the oil has a significant effect on its price at market. As such, there is a need for raw material tests to identify not only the type of oil but its quality. This paper describes two approaches to rapidly identifying and classifying lavender oil. First, the ISO Standard 11024 test method was evaluated in order to determine its suitability to assess lavender oil quality but due to its targeted and simplistic approach, it has the potential to miss classify oil quality. Second, utilizing the data generated by the ISO Standard 11024 test methodology, an untargeted chemometric predicative model was developed in order to rapidly assess and characterize lavender oils (Lavandula angustifolia L.) for geographical/environmental adulteration that impact quality. Of the 170 compounds identified as per the ISO Standard 11024 test method utilizing GC-MS analyses, 15 unique compounds that greatly differentiate between the two classes of lavender were identified. Using these 15 compounds, a predicative multivariate chemometric model was developed that enabled lavender oil samples to be reliably differentiated based on quality. A misclassification analysis was performed and it was found that the predictions were sound (100% matching rate). Such an approach will enable producers, distributers, suppliers and manufactures to rapidly screen lavender essential oil. The authors concede that the validation and implementation of such an approach is more difficult than a conventional chromatographic assay. However, the rapid, reliable and less problematic screening is vastly superior and easily justifies any early implementation validation difficulties and costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助masheng采纳,获得10
3秒前
hyper_zhou完成签到,获得积分10
5秒前
搞怪尔槐完成签到,获得积分10
5秒前
丘比特应助大象采纳,获得10
6秒前
呆萌的u完成签到,获得积分10
7秒前
FashionBoy应助KBRS采纳,获得10
10秒前
DYJ关闭了DYJ文献求助
13秒前
牛黄完成签到 ,获得积分10
13秒前
hyper_zhou发布了新的文献求助10
14秒前
16秒前
科研通AI5应助Nancy采纳,获得30
16秒前
momo完成签到,获得积分10
19秒前
倪倪发布了新的文献求助10
19秒前
李7完成签到,获得积分10
20秒前
大模型应助歼击机88采纳,获得10
21秒前
小草发布了新的文献求助10
21秒前
21秒前
22秒前
玛斯特尔完成签到,获得积分10
24秒前
25秒前
zhuangxiong完成签到,获得积分10
27秒前
Nancy发布了新的文献求助30
28秒前
28秒前
小草完成签到,获得积分10
29秒前
32秒前
wsh123发布了新的文献求助10
32秒前
33秒前
KBRS发布了新的文献求助10
35秒前
脑洞疼应助高高的天晴采纳,获得10
40秒前
眉书初完成签到 ,获得积分10
41秒前
李萌萌完成签到 ,获得积分10
43秒前
璐璐完成签到 ,获得积分10
43秒前
深情安青应助科研通管家采纳,获得10
47秒前
SciGPT应助科研通管家采纳,获得10
47秒前
香蕉觅云应助科研通管家采纳,获得10
47秒前
bkagyin应助科研通管家采纳,获得10
48秒前
乐乐应助科研通管家采纳,获得10
48秒前
48秒前
华仔应助EineK采纳,获得30
49秒前
平常的毛豆应助hughd采纳,获得30
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327403
关于积分的说明 10230923
捐赠科研通 3042284
什么是DOI,文献DOI怎么找? 1669963
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804