吸附
分子
人工神经网络
有机分子
图形
化学
计算机科学
材料科学
生物系统
化学工程
理论计算机科学
有机化学
人工智能
工程类
生物
作者
Sergio Pablo‐García,Santiago Morandi,Rodrigo A. Vargas–Hernández,Kjell Jorner,Žarko Ivković,Núria López,Alán Aspuru‐Guzik
标识
DOI:10.1038/s43588-023-00437-y
摘要
Modeling in heterogeneous catalysis requires the extensive evaluation of the energy of molecules adsorbed on surfaces. This is done via density functional theory but for large organic molecules it requires enormous computational time, compromising the viability of the approach. Here we present GAME-Net, a graph neural network to quickly evaluate the adsorption energy. GAME-Net is trained on a well-balanced chemically diverse dataset with C
科研通智能强力驱动
Strongly Powered by AbleSci AI