Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer

数学优化 粒子群优化 计算机科学 人口 局部最优 水准点(测量) 经济调度 电力系统 最优化问题 群体智能 觅食 算法 工程类 功率(物理) 数学 地理 生态学 物理 量子力学 生物 人口学 大地测量学 社会学
作者
Mohamed H. Hassan,Salah Kamel,Francisco Jurado,Mohamed Ebeed,Mohamed F. Elnaggar
出处
期刊:alexandria engineering journal [Elsevier BV]
卷期号:72: 573-591 被引量:51
标识
DOI:10.1016/j.aej.2023.04.002
摘要

The aim of the optimization economic load dispatch (ELD) problem is to assign the optimal generated power of the thermal units for cost reduction with satisfying the loading of the operational constraints. The ELD is a high-dimensional and non-convex problem that became a more complex problem in the case of optimizing the output generated power of large-scale systems. In this regard, an enhanced version of the Beluga whale optimization (EBWO) is proposed to deal with the ELD of the large-scale systems. Beluga whale optimization (BWO) is an efficient new optimization technique that mimics the behavior of the Beluga whales (BWs) in preying, swimming, and whale fall. However, the BWO may suffer from stagnation in local optima and scarcity of population diversity like other metaheuristics. The proposed EBWO algorithm is presented to render the standard BWO more robust and powerful search by using two strategies including the cyclone foraging motion for boosting the exploitation phase of the optimization algorithm and the quasi-oppositional based learning (QOBL) for improving population diversity. Firstly, Simulations are carried out on seven benchmark functions to prove the validation of the proposed EBWO algorihm compared with five recent algorithms. Then, The performance of the EBWO is checked on 11-units, 40-units, and also 110-unit test systems, and the obtained results of EBWO are compared with other well-known techniques such as the classical BWO, FOX Optimization Algorithm (FOX), Skill Optimization Algorithm (SOA), and Sand Cat swarm optimization (SCSO) as well as the with existing algorithms from the literature including DE, TLBO, MPSO, NGWO, IGA, NPSO, CJAYA, SMA, PSO, PPSO, SSA, MPA, MGMPA, and HSSA. The Numerical results show that the proposed algorithm is very competitive compared with the other reported optimization algorithms in obtaining low fuel costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shennian完成签到 ,获得积分10
2秒前
专一的幻莲完成签到,获得积分10
3秒前
3秒前
feng1235发布了新的文献求助10
3秒前
Cookies完成签到,获得积分10
5秒前
Werner完成签到 ,获得积分10
5秒前
ssss发布了新的文献求助10
6秒前
Ivy完成签到,获得积分20
6秒前
Echo1128完成签到 ,获得积分10
7秒前
健壮的尔烟完成签到,获得积分10
8秒前
13秒前
16秒前
16秒前
16秒前
Lucas应助djy采纳,获得10
17秒前
18秒前
科研小崩豆完成签到,获得积分10
19秒前
19秒前
bkagyin应助显眼包采纳,获得10
20秒前
Nicole完成签到,获得积分10
20秒前
Huangxy发布了新的文献求助10
21秒前
小马甲应助城市公园采纳,获得10
22秒前
23秒前
顺心靖雁发布了新的文献求助10
23秒前
23秒前
24秒前
吕帅锜发布了新的文献求助10
24秒前
小二郎应助科研小崩豆采纳,获得10
26秒前
田様应助LL采纳,获得10
27秒前
djy完成签到,获得积分10
28秒前
TRY发布了新的文献求助10
29秒前
29秒前
clayluo发布了新的文献求助10
29秒前
viper3完成签到,获得积分10
31秒前
31秒前
34秒前
34秒前
黎li完成签到 ,获得积分10
35秒前
sudaxia100发布了新的文献求助10
35秒前
36秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824335
求助须知:如何正确求助?哪些是违规求助? 3366644
关于积分的说明 10441882
捐赠科研通 3085931
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816425
科研通“疑难数据库(出版商)”最低求助积分说明 769640