RD-OpenMax: Rethinking OpenMax for Robust Realistic Open-Set Recognition

判别式 计算机科学 协方差 人工智能 分类器(UML) 联营 航程(航空) 模式识别(心理学) 机器学习 数学 统计 复合材料 材料科学
作者
Xiaojie Yin,Bing Cao,Qinghua Hu,Qilong Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 7565-7579 被引量:12
标识
DOI:10.1109/tnnls.2024.3394890
摘要

Open-set recognition (OSR) toward a practical open-world setting has attracted increasing research attention in recent years. However, existing OSR settings are either too idealized or focus on specific scenes such as long-tailed distribution and few-shot samples, which fail to capture the complexity of real-world scenarios. In this article, we propose a realistic OSR (ROSR) setting that covers a diverse range of challenging and real-world scenarios, including fine-grained cases with strong semantic correlation and a large number of species, few-shot samples, long-tailed sample distribution, dynamic inputs (e.g., images, spatio-temporal, and multimodal signals) and cross-domain adaptation. In particular, we rethink the simple and basic OpenMax for the ROSR setting and introduce a novel method, regularized discriminative OpenMax (RD-OpenMax), to handle the challenges in the ROSR setting. RD-OpenMax improves upon the basic OpenMax approach by introducing a covariance attention-based covariance pooling (CACP) module as a global aggregation step before the deep architecture's classifier. This module explores rich statistical information on features and provides discriminative distance scores for OpenMax. To address the instability of extreme value theory (EVT) estimation due to insufficient training samples under few-shot and long-tailed scenarios, we propose a regularized EVT (REVT) method based on Monte Carlo sampling to recalibrate the distribution of distance scores. As such, our RD-OpenMax performs a REVT model of distance scores generated by discriminative CACP representations to distinguish known classes and recognize unknown ones effectively and robustly. Extensive experiments are conducted on more than ten visual benchmarks across several scenarios, and the empirical comparisons show that the ROSR setting challenges existing state-of-the-art OSR approaches. Moreover, our RD-OpenMax clearly outperforms its counterparts under the ROSR setting while performing favorably against state-of-the-arts under the traditional OSR setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助djbj2022采纳,获得20
刚刚
1秒前
快乐星球关注了科研通微信公众号
2秒前
Flori完成签到 ,获得积分10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
3秒前
aldehyde应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
aldehyde应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得30
4秒前
Abracadabra应助科研通管家采纳,获得50
4秒前
4秒前
4秒前
4秒前
科研通AI2S应助zqxu采纳,获得30
5秒前
量子星尘发布了新的文献求助10
7秒前
kingwill举报超帅谷芹求助涉嫌违规
7秒前
7秒前
中森明菜发布了新的文献求助30
7秒前
无畏发布了新的文献求助10
9秒前
9秒前
至乐无乐完成签到 ,获得积分10
10秒前
10秒前
善学以致用应助XIXI采纳,获得10
11秒前
欢呼的雁菡完成签到,获得积分10
11秒前
秋鱼完成签到,获得积分10
13秒前
lit完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528154
求助须知:如何正确求助?哪些是违规求助? 4617769
关于积分的说明 14560217
捐赠科研通 4556495
什么是DOI,文献DOI怎么找? 2496966
邀请新用户注册赠送积分活动 1477228
关于科研通互助平台的介绍 1448548