Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis

医学 乳腺癌 Lasso(编程语言) 淋巴结 放射科 超声波 逻辑回归 随机森林 腋窝 列线图 特征(语言学) 人工智能 肿瘤科 癌症 机器学习 内科学 计算机科学 语言学 哲学 万维网
作者
Si‐Rui Wang,Chun‐Li Cao,Tingting Du,Jin‐Li Wang,Jun Li,Wen‐Xiao Li,Ming Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1611-1625 被引量:8
标识
DOI:10.1002/jum.16483
摘要

Objective This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis—encompassing both the intratumoral and peritumoral—to predict the status of axillary lymph nodes in patients with early‐stage breast cancer. Methods The study employed retrospective methods, collecting clinical information, ultrasound data, and postoperative pathological results from 321 breast cancer patients (including 224 in the training group and 97 in the validation group). Through correlation analysis, univariate analysis, and Lasso regression analysis, independent risk factors related to axillary lymph node metastasis in breast cancer were identified from conventional ultrasound and immunohistochemical indicators, and a clinical feature model was constructed. Additionally, features were extracted from ultrasound images of the intratumoral and its 1–5 mm peritumoral to establish a radiomics feature formula. Furthermore, by combining clinical features and ultrasound radiomics features, six machine learning models (Logistic Regression, Decision Tree, Support Vector Machine, Extreme Gradient Boosting, Random Forest, and K‐Nearest Neighbors) were compared for diagnostic efficacy, and constructing a joint prediction model based on the optimal ML algorithm. The use of Shapley Additive Explanations (SHAP) enhanced the visualization and interpretability of the model during the diagnostic process. Results Among the 321 breast cancer patients, 121 had axillary lymph node metastasis, and 200 did not. The clinical feature model had an AUC of 0.779 and 0.777 in the training and validation groups, respectively. Radiomics model analysis showed that the model including the Intratumor +3 mm peritumor area had the best diagnostic performance, with AUCs of 0.847 and 0.844 in the training and validation groups, respectively. The joint prediction model based on the XGBoost algorithm reached AUCs of 0.917 and 0.905 in the training and validation groups, respectively. SHAP analysis indicated that the Rad Score had the highest weight in the prediction model, playing a significant role in predicting axillary lymph node metastasis in breast cancer. Conclusion The predictive model, which integrates clinical features and radiomic characteristics using the XGBoost algorithm, demonstrates significant diagnostic value for axillary lymph node metastasis in breast cancer. This model can provide significant references for preoperative surgical strategy selection and prognosis evaluation for breast cancer patients, helping to reduce postoperative complications and improve long‐term survival rates. Additionally, the utilization of SHAP enhancing the global and local interpretability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓜瓜驳回了Hello应助
1秒前
2秒前
细腻听白发布了新的文献求助100
3秒前
3秒前
5秒前
猪四郎完成签到,获得积分10
6秒前
红烧肉耶完成签到 ,获得积分10
6秒前
万能图书馆应助热情千风采纳,获得10
6秒前
8秒前
那无若完成签到,获得积分10
8秒前
zhugepengju发布了新的文献求助10
8秒前
9秒前
笨蛋美女完成签到 ,获得积分10
9秒前
11秒前
霸气映之完成签到,获得积分10
11秒前
小马哥完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
11秒前
小小鱼完成签到,获得积分10
12秒前
Qwe发布了新的文献求助20
12秒前
无水乙醚完成签到,获得积分10
15秒前
鱼鱼发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
bkagyin应助好好的er采纳,获得10
17秒前
卷卷更快乐完成签到 ,获得积分10
19秒前
19秒前
星辰大海应助秦风采纳,获得10
19秒前
19秒前
风间琉璃完成签到 ,获得积分10
20秒前
bkagyin应助sf采纳,获得10
21秒前
无奈友蕊发布了新的文献求助10
21秒前
aaiirrii发布了新的文献求助20
21秒前
dog完成签到,获得积分10
22秒前
iris601完成签到,获得积分10
22秒前
23秒前
哈哈完成签到 ,获得积分10
23秒前
24秒前
飞得更高完成签到,获得积分20
25秒前
哭泣飞瑶完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737537
求助须知:如何正确求助?哪些是违规求助? 5372750
关于积分的说明 15335640
捐赠科研通 4880939
什么是DOI,文献DOI怎么找? 2623188
邀请新用户注册赠送积分活动 1572012
关于科研通互助平台的介绍 1528828