Aversion to Hiring Algorithms: Transparency, Gender Profiling, and Self-Confidence

代表 过度自信效应 任务(项目管理) 计算机科学 偏爱 人工智能 机器学习 算法 经济 心理学 管理 社会心理学 微观经济学 程序设计语言
作者
Marie-Pierre Dargnies,Rustamdjan Hakimov,Dorothea Kübler
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:72 (1): 285-301 被引量:21
标识
DOI:10.1287/mnsc.2022.02774
摘要

We run an online experiment to study the origins of algorithm aversion. Participants are in the role of either workers or managers. Workers perform three real-effort tasks: task 1, task 2, and the job task, which is a combination of tasks 1 and 2. They choose whether the hiring decision between themselves and another worker is made by a participant in the role of a manager or by an algorithm. In a second set of experiments, managers choose whether they want to delegate their hiring decisions to the algorithm. When the algorithm does not use workers’ gender to predict their job-task performance and workers know this, they choose the algorithm more often than in the baseline treatment where gender is employed. Feedback to the managers about their performance in hiring the best workers increases their preference for the algorithm relative to the baseline without feedback, because managers are, on average, overconfident. Finally, providing details on how the algorithm works does not increase the preference for the algorithm for workers or for managers. This paper was accepted by Elena Katok, Special Issue on the Human-Algorithm Connection. Funding: D. Kübler acknowledges financial support from the Deutsche Forschungsgemeinschaft [CRC TRR 190], R. Hakimov acknowledges financial support from the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung [Project 100018_189152], and M.-P. Dargnies acknowledges financial support from the Agence Nationale de la Recherche (ANR JCJC TrustSciTruths). Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.02774 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助善良的飞鸟采纳,获得10
刚刚
浮游应助可靠三问采纳,获得10
1秒前
策策完成签到,获得积分10
1秒前
小白发布了新的文献求助10
1秒前
干净寻冬应助十八鱼采纳,获得10
1秒前
直率海豚发布了新的文献求助10
1秒前
1秒前
1秒前
yzy98625942发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
情怀应助nessa采纳,获得10
3秒前
4秒前
wffff发布了新的文献求助10
4秒前
lc发布了新的文献求助10
6秒前
CAO完成签到 ,获得积分10
7秒前
脑洞疼应助sweet采纳,获得10
7秒前
haha完成签到,获得积分10
7秒前
7秒前
7秒前
小巧冬萱发布了新的文献求助10
7秒前
wen完成签到,获得积分20
8秒前
Akim应助阿正嗖啪采纳,获得10
8秒前
8秒前
科研通AI6应助CHEN采纳,获得10
8秒前
NexusExplorer应助黎L采纳,获得10
8秒前
乐乐应助zttr1采纳,获得10
9秒前
fansaiwang完成签到,获得积分10
9秒前
洪东智完成签到,获得积分10
9秒前
Hello应助路绪震采纳,获得10
10秒前
10秒前
10秒前
11秒前
小白完成签到,获得积分10
11秒前
狂野雨兰发布了新的文献求助10
12秒前
hh发布了新的文献求助10
12秒前
CarryLJR完成签到,获得积分10
14秒前
Dean应助Michael采纳,获得110
14秒前
Sunday发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643294
求助须知:如何正确求助?哪些是违规求助? 4760914
关于积分的说明 15020418
捐赠科研通 4801640
什么是DOI,文献DOI怎么找? 2566917
邀请新用户注册赠送积分活动 1524783
关于科研通互助平台的介绍 1484355