Information extraction of UV-NIR spectral data in waste water based on Large Language Model

萃取(化学) 信息抽取 环境科学 计算机科学 情报检索 自然语言处理 化学 色谱法
作者
Jiheng Liang,Xiangyang Yu,Weibin Hong,Yefan Cai
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:318: 124475-124475 被引量:9
标识
DOI:10.1016/j.saa.2024.124475
摘要

In recent years, with the rise of various machine learning methods, the Ultraviolet and Near Infrared (UV-NIR) spectral analysis has been impressive in the determination of intricate systems. However, the UV-NIR spectral analysis based on traditional machine learning requires independent training with tedious parameter tuning for different samples or tasks. As a result, training a high-quality model is often complicated and time-consuming. Large language model (LLM) is one of the cutting-edge achievements in deep learning, with the parameter size of the order of billion. LLM can extract abstract information from input and use it effectively. Even without any additional training, using only simple natural language prompts, LLM can accomplish tasks that have never been seen before in completely new domains. We look forward to utilizing this capability in spectral analysis to reduce the time-consuming and operational difficulties. In this study, we used UV-NIR spectral analysis to predict the concentration of Chemical Oxygen Demand (COD) in three different water samples, including a complex wastewater. By extracting the characteristic bands in the spectrum, we input them into LLM for concentration prediction. We compared the COD prediction results of different models on water samples and discussed the effects of different experiments setting on LLM. The results show that even with brief prompts, the prediction of LLM in wastewater achieved the best performance, with R2 and RMSE equal to 0.931 and 10.966, which exceed the best results of traditional models, where R2 and RMSE correspond to 0.920 and 11.854. This result indicates that LLM, with simpler operation and less time-consuming, has ability to approach or even surpass traditional machine learning models in UV-NIR spectral analysis. In conclusion, our study proposed a new method for the UV-NIR spectral analysis based on LLM and preliminary demonstrated the potential of LLM for application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gstaihn发布了新的文献求助10
1秒前
1秒前
NEO完成签到 ,获得积分10
1秒前
2秒前
深情安青应助lzy采纳,获得10
3秒前
nieinei完成签到 ,获得积分10
4秒前
JamesPei应助wop111采纳,获得10
6秒前
Owen应助狗头采纳,获得10
7秒前
刻苦的溪流完成签到,获得积分10
8秒前
争气发布了新的文献求助10
9秒前
自觉的草莓完成签到 ,获得积分10
11秒前
秦苏箐完成签到 ,获得积分10
12秒前
JamesPei应助Yang采纳,获得10
12秒前
宇智波白哉完成签到,获得积分10
12秒前
13秒前
15秒前
饱满一手完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
杨钧贺完成签到,获得积分10
18秒前
天真幻珊完成签到 ,获得积分10
19秒前
19秒前
Xiaoxiao应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得80
20秒前
慕青应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得30
20秒前
无私迎海发布了新的文献求助10
20秒前
华仔应助科研通管家采纳,获得10
21秒前
21秒前
向日葵发布了新的文献求助10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
21秒前
Fourteen发布了新的文献求助10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
陌陌发布了新的文献求助10
22秒前
野性的初曼完成签到,获得积分10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214799
求助须知:如何正确求助?哪些是违规求助? 4390207
关于积分的说明 13669062
捐赠科研通 4251679
什么是DOI,文献DOI怎么找? 2332831
邀请新用户注册赠送积分活动 1330435
关于科研通互助平台的介绍 1284189