Smart bridge bearing monitoring: Predicting seismic responses with a multi‐head attention‐based CNN‐LSTM network

桥(图论) 方位(导航) 主管(地质) 计算机科学 结构工程 工程类 地质学 人工智能 医学 地貌学 内科学
作者
Omid Yazdanpanah,Minwoo Chang,M. K. Park,Sujith Mangalathu
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
被引量:2
标识
DOI:10.1002/eqe.4223
摘要

Abstract This paper introduces a novel method to spontaneously predict displacement time histories and hysteresis curves of bridge lead rubber bearings under seismic loads and axial forces. The method leverages a stacked convolutional‐bidirectional Cuda Long Short Term Memory network, enhanced with multi‐head attention, skip connections, exponential learning rate scheduler, and a hybrid activation function to improve performance. The framework utilizes the functional application programming interface provided by the Python Keras library to build a model that takes input features such as horizontal and vertical ground accelerations, actuator loads in both lateral and vertical directions, and the superstructure mass. The effectiveness of the deep learning model is evaluated using a considerable experimental dataset of 53 real‐time hybrid simulations, spanning various earthquake intensities and superstructure masses (Chi‐Chi: 15 scenarios, El Centro: 15 scenarios, Kobe: 13 scenarios, and Northridge: 10 scenarios). Initially, Northridge earthquake data serves as unseen data, while the rest is used for training and validation. In a subsequent trial, the unseen data is centered on Kobe earthquake scenarios. By employing a hybrid loss function merging mean square and mean absolute errors, the model exhibits a substantial correlation of over 83% between predicted displacement time series and empirical measurements for the unseen data. In summary, the proposed model offers miscellaneous benefits, including time and cost savings in experimental efforts by decreasing the need for additional tests. It further delivers a swift and precise insight into the bridge bearing performance and its energy dissipation, facilitating timely and accurate bridge design in different scenarios for engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxuan发布了新的文献求助10
刚刚
jj发布了新的文献求助10
刚刚
山川无恙发布了新的文献求助50
刚刚
hbzyydx46完成签到,获得积分10
1秒前
2秒前
小宁发布了新的文献求助10
3秒前
失眠醉易应助韩麒嘉采纳,获得20
3秒前
羽客发布了新的文献求助10
3秒前
我爱写论文完成签到,获得积分10
4秒前
5秒前
Ava应助ai zs采纳,获得10
5秒前
6秒前
6秒前
白踏歌发布了新的文献求助10
6秒前
liuxuan完成签到,获得积分10
7秒前
7秒前
8秒前
菜青虫完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
sariel完成签到,获得积分20
10秒前
linciko发布了新的文献求助10
11秒前
JamesPei应助小宁采纳,获得10
11秒前
11秒前
爆米花应助白踏歌采纳,获得20
12秒前
Fy发布了新的文献求助10
12秒前
灵巧荆发布了新的文献求助10
13秒前
15秒前
linciko完成签到,获得积分20
16秒前
subtle完成签到 ,获得积分10
16秒前
蜡笔小新完成签到 ,获得积分10
16秒前
香蕉觅云应助昵称待定采纳,获得10
17秒前
芒果完成签到,获得积分10
17秒前
顾矜应助清爽的傲旋采纳,获得10
17秒前
小黑子发布了新的文献求助10
18秒前
18秒前
viauue9完成签到,获得积分10
18秒前
luoxue发布了新的文献求助10
18秒前
AARON发布了新的文献求助10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818442
求助须知:如何正确求助?哪些是违规求助? 3361570
关于积分的说明 10413504
捐赠科研通 3079852
什么是DOI,文献DOI怎么找? 1693246
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768228