CDI-NSTSEG: A clinical diagnosis-inspired effective and efficient framework for non-salient small tumor segmentation

分割 计算机科学 背景(考古学) 人工智能 突出 模式识别(心理学) 图像分割 比例(比率) 计算机视觉 量子力学 生物 物理 古生物学
作者
Jianguo Ju,Dandan Qiu,Shumin Ren,Lei Hao,Wei Zhao,Pengfei Xu,Xuesong Zhao,Ziyu Guan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3440925
摘要

To accurately segment various clinical lesions from computed tomography(CT) images is a critical task for the diagnosis and treatment of many diseases. However, current segmentation frameworks are tailored to specific diseases, and limited frameworks can detect and segment different types of lesions. Besides, it is another challenging problem for current segmentation frameworks to segment visually inconspicuous and small-scale tumors (such as small intestinal stromal tumors and pancreatic tumors). Our proposed framework, CDI-NSTSEG, efficiently segments small non-salient tumors using multi-scale visual information and non-local target mining. CDI-NSTSEG follows the diagnostic process of clinicians, including preliminary screening, localization, refinement, and segmentation. Specifically, we first explore to extract the unique features at three different scales (1×, 0.5×, and 1.5×) based on the scale space theory. Our proposed scale fusion module (SFM) hierarchically fuses features to obtain a comprehensive representation, similar to preliminary screening in clinical diagnosis. The global localization module (GLM) is designed with a non-local attention mechanism. It captures the long-range semantic dependencies of channels and spatial locations from the fused features. GLM enables us to locate the tumor from a global perspective and output the initial prediction results. Finally, we design the layer focusing module (LFM) to gradually refine the initial results. LFM mainly conducts context exploration based on foreground and background features, focuses on suspicious areas layer-by-layer, and performs element-by-element addition and subtraction to eliminate errors. Our framework achieves state-of-the-art segmentation performance on small intestinal stromal tumor and pancreatic tumor datasets. CDI-NSTSEG outperforms the best comparison segmentation method by 7.38% Dice on small intestinal stromal tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李lll发布了新的文献求助10
刚刚
刚刚
刚刚
xaopng完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
tuluiioo发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
研友_VZG7GZ应助hyx采纳,获得10
6秒前
NexusExplorer应助北雁采纳,获得10
7秒前
不停发布了新的文献求助10
7秒前
8秒前
积极的罡发布了新的文献求助10
8秒前
jenny完成签到,获得积分10
8秒前
林黛玉发布了新的文献求助10
8秒前
万能图书馆应助yyyyyyy采纳,获得10
8秒前
cling完成签到,获得积分10
9秒前
woshizy发布了新的文献求助10
10秒前
SciGPT应助北雁采纳,获得10
11秒前
12秒前
星辰大海应助吕健采纳,获得10
12秒前
Jasper应助哭泣城采纳,获得10
13秒前
14秒前
14秒前
15秒前
积极的罡完成签到,获得积分10
16秒前
赘婿应助小丁采纳,获得10
16秒前
16秒前
17秒前
CodeCraft应助不停采纳,获得30
19秒前
小马甲应助Juan_He采纳,获得10
19秒前
1111发布了新的文献求助10
20秒前
orixero应助soong采纳,获得10
20秒前
SciGPT应助林黛玉采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870808
求助须知:如何正确求助?哪些是违规求助? 3412914
关于积分的说明 10681953
捐赠科研通 3137368
什么是DOI,文献DOI怎么找? 1730902
邀请新用户注册赠送积分活动 834444
科研通“疑难数据库(出版商)”最低求助积分说明 781172