BrainSegFounder: Towards 3D foundation models for neuroimage segmentation

计算机科学 分割 人工智能 神经影像学 医学影像学 机器学习 深度学习 模式识别(心理学) 心理学 精神科
作者
J. Charles Cox,Peng Liu,Skylar E. Stolte,Yunchao Yang,Kang Liu,Kyle B. See,Huiwen Ju,Ruogu Fang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103301-103301 被引量:7
标识
DOI:10.1016/j.media.2024.103301
摘要

The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的慕卉完成签到 ,获得积分10
刚刚
刚刚
sunnian发布了新的文献求助10
2秒前
文艺的筮完成签到 ,获得积分10
3秒前
无与伦比完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
阳光海云应助曙光采纳,获得10
5秒前
ggg发布了新的文献求助10
5秒前
汉堡包应助清脆的文龙采纳,获得10
5秒前
6秒前
qz完成签到,获得积分10
6秒前
麦满分完成签到,获得积分10
6秒前
于特发布了新的文献求助10
7秒前
byron发布了新的文献求助10
7秒前
科目三应助李先生采纳,获得80
7秒前
zww完成签到,获得积分10
7秒前
Heart_of_Stone应助修辛采纳,获得10
8秒前
无私万仇完成签到,获得积分20
8秒前
Jasper应助燃之一手采纳,获得10
9秒前
9秒前
共享精神应助Ying采纳,获得10
10秒前
10秒前
幻想的思绪完成签到,获得积分10
11秒前
上官若男应助木木采纳,获得10
12秒前
Zoo应助yuzi采纳,获得30
12秒前
柘涵完成签到,获得积分20
12秒前
圆又圆0717完成签到,获得积分10
12秒前
12秒前
13秒前
嘻嘻应助ggg采纳,获得10
13秒前
研友_VZG7GZ应助caixiayin采纳,获得30
13秒前
NexusExplorer应助hua采纳,获得10
13秒前
WalkToSky完成签到,获得积分10
14秒前
NSS发布了新的文献求助10
14秒前
14秒前
15秒前
于特完成签到,获得积分10
16秒前
LILILI完成签到,获得积分10
16秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4113685
求助须知:如何正确求助?哪些是违规求助? 3652018
关于积分的说明 11564879
捐赠科研通 3356346
什么是DOI,文献DOI怎么找? 1843629
邀请新用户注册赠送积分活动 909592
科研通“疑难数据库(出版商)”最低求助积分说明 826386