Application of a visual-based autonomous drone system for greenhouse muskmelon phenotyping

无人机 计算机科学 Orb(光学) 温室 点云 计算机视觉 人工智能 跟踪系统 实时计算 卡尔曼滤波器 遗传学 生物 图像(数学) 园艺
标识
DOI:10.13031/aim.202300294
摘要

Abstract. Compared to traditional methods of monitoring crop growth or assessing health status using stationary sensors, drone systems offer the advantages of faster data collection and increased precision due to their flexible maneuverability. This study specifically focuses on developing a visual-based autonomous drone navigation system designed for localizing greenhouse melons. To enhance the stability of the drone navigation system and improve the accuracy of the melon localization algorithm, we made two key improvements. Firstly, we utilized ArUco markers as anchor points and integrated their detection into Enhanced ORB-SLAM2, a modified version of ORB-SLAM2 developed by us. This addition allows the system to detect and track ArUco markers, which serve as visual reference points within the greenhouse environment. Secondly, we calibrated the pre-built point cloud map to ensure its accuracy and alignment with the actual environment. By combining these enhancements, we achieved a more stable and precise drone navigation system for localizing greenhouse melons. The drone sends live RGB images to the ground control station, which runs ROS Melodic on the Ubuntu 18.04 operating system. The Enhanced ORB-SLAM2 algorithm uses the drone‘s images and a pre-built point cloud map to determine the drone's location within the greenhouse. Furthermore, in the greenhouse, the drone maintains a root mean square error of below 30 centimeters for three types of flight missions: straight line, closed-loop without turning, and closed-loop with turning. The melon tracking algorithm was built using the YOLOv4 object detection model and DeepSORT object tracking algorithm. To reduce ID switching, a three-step data cleaning method was applied to the tracking results, which proved to be significantly effective. Triangulation is utilized to calculate the positions of individual muskmelon fruits within the greenhouse. Through the implementation of two calibration methods, the melon position error has been effectively reduced to 0.223 meters. Finally, our system can analyze the quantity and positions of melons using the images recorded by the drone navigation. The experimental results confirm the viability of the system, and the proposed approach offers an efficient method for accurately locating melons within the greenhouse.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
啦啦啦发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
华仔应助浮生绘采纳,获得10
3秒前
4秒前
乐乐应助潇洒的元风采纳,获得10
4秒前
qiyewang发布了新的文献求助10
4秒前
5秒前
psj发布了新的文献求助10
6秒前
cugwzr完成签到,获得积分10
8秒前
在水一方应助李笑格采纳,获得10
8秒前
9秒前
9秒前
李迅迅发布了新的文献求助10
10秒前
Sunech发布了新的文献求助10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
qiyewang完成签到,获得积分20
15秒前
浮生绘发布了新的文献求助10
16秒前
小马甲应助芥末薯条采纳,获得10
16秒前
17秒前
研友_VZG7GZ应助qiyewang采纳,获得10
18秒前
DTOU应助科研通管家采纳,获得10
19秒前
DTOU应助科研通管家采纳,获得10
19秒前
After应助科研通管家采纳,获得10
19秒前
After应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785469
求助须知:如何正确求助?哪些是违规求助? 5687957
关于积分的说明 15467600
捐赠科研通 4914566
什么是DOI,文献DOI怎么找? 2645270
邀请新用户注册赠送积分活动 1593065
关于科研通互助平台的介绍 1547398