亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A bidirectional dynamic grouping multi-objective evolutionary algorithm for feature selection on high-dimensional classification

特征选择 维数之咒 计算机科学 特征(语言学) 人工智能 进化算法 模式识别(心理学) 预处理器 选择(遗传算法) 数据挖掘 机器学习 语言学 哲学
作者
Kunjie Yu,Shaoru Sun,Jing Liang,Ke Chen,Boyang Qu,Caitong Yue,Ling Wang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:648: 119619-119619 被引量:7
标识
DOI:10.1016/j.ins.2023.119619
摘要

As a key preprocessing step in classification, feature selection involves two conflicting objectives: maximizing the classification accuracy and minimizing the number of selected features. Therefore, multi-objective optimization is widely used in feature selection due to its excellent trade-off between the convergence of two objectives. However, most existing multi-objective feature selection methods still face the issues of the “curse of dimensionality” and high computational costs, especially when the search space is large. To solve the above issues, this paper proposes a bidirectional dynamic grouping multi-objective evolutionary approach for high-dimensional feature selection, referred to as BDGMOEA. This approach transforms a high-dimensional feature selection problem into a feature selection task with a smaller search space by the idea of feature grouping, in which one bit of an individual represents a group of features. Specifically, a grouping search strategy is developed to divide the features into different quadrants according to the importance of the features obtained by different evaluation techniques. Then, the features in each quadrant are grouped by sector. This strategy can effectively narrow the search space and quickly locate promising feature regions. In addition, a bidirectional dynamic adjustment mechanism is presented by considering the evolutionary state of the population, and it can be used to explore each feature in more detail and comprehensively to prevent good features from being ignored in unselected groups. The experimental results demonstrate that the proposed BDGMOEA method performs the best in most cases, indicating that BDGMOEA not only achieves better classification performance but also reduces the training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
榴下晨光完成签到 ,获得积分10
17秒前
33秒前
ceeray23发布了新的文献求助20
39秒前
JavedAli完成签到,获得积分10
1分钟前
酷波er应助guo采纳,获得10
1分钟前
linyi发布了新的文献求助10
1分钟前
1分钟前
guo发布了新的文献求助10
1分钟前
大个应助树妖三三采纳,获得10
1分钟前
情怀应助linyi采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI5应助可靠的寒风采纳,获得10
2分钟前
花落无声完成签到 ,获得积分10
3分钟前
3分钟前
树妖三三发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
Santiago完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
顾建瑜发布了新的文献求助10
4分钟前
科研通AI2S应助顾建瑜采纳,获得10
4分钟前
kuoping完成签到,获得积分0
4分钟前
4分钟前
BLESSING发布了新的文献求助10
5分钟前
5分钟前
5分钟前
研友_Lw4Ngn发布了新的文献求助10
5分钟前
BLESSING完成签到,获得积分20
6分钟前
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
6分钟前
CC完成签到,获得积分0
6分钟前
orixero应助BLESSING采纳,获得10
6分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105191
求助须知:如何正确求助?哪些是违规求助? 4315149
关于积分的说明 13444107
捐赠科研通 4143704
什么是DOI,文献DOI怎么找? 2270597
邀请新用户注册赠送积分活动 1273098
关于科研通互助平台的介绍 1210214